This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Schema for induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on the given set with any one element removed. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | findcard.1 | ⊢ ( 𝑥 = ∅ → ( 𝜑 ↔ 𝜓 ) ) | |
| findcard.2 | ⊢ ( 𝑥 = ( 𝑦 ∖ { 𝑧 } ) → ( 𝜑 ↔ 𝜒 ) ) | ||
| findcard.3 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜃 ) ) | ||
| findcard.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) | ||
| findcard.5 | ⊢ 𝜓 | ||
| findcard.6 | ⊢ ( 𝑦 ∈ Fin → ( ∀ 𝑧 ∈ 𝑦 𝜒 → 𝜃 ) ) | ||
| Assertion | findcard | ⊢ ( 𝐴 ∈ Fin → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | findcard.1 | ⊢ ( 𝑥 = ∅ → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | findcard.2 | ⊢ ( 𝑥 = ( 𝑦 ∖ { 𝑧 } ) → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | findcard.3 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜃 ) ) | |
| 4 | findcard.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) | |
| 5 | findcard.5 | ⊢ 𝜓 | |
| 6 | findcard.6 | ⊢ ( 𝑦 ∈ Fin → ( ∀ 𝑧 ∈ 𝑦 𝜒 → 𝜃 ) ) | |
| 7 | isfi | ⊢ ( 𝑥 ∈ Fin ↔ ∃ 𝑤 ∈ ω 𝑥 ≈ 𝑤 ) | |
| 8 | breq2 | ⊢ ( 𝑤 = ∅ → ( 𝑥 ≈ 𝑤 ↔ 𝑥 ≈ ∅ ) ) | |
| 9 | 8 | imbi1d | ⊢ ( 𝑤 = ∅ → ( ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ( 𝑥 ≈ ∅ → 𝜑 ) ) ) |
| 10 | 9 | albidv | ⊢ ( 𝑤 = ∅ → ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ≈ ∅ → 𝜑 ) ) ) |
| 11 | breq2 | ⊢ ( 𝑤 = 𝑣 → ( 𝑥 ≈ 𝑤 ↔ 𝑥 ≈ 𝑣 ) ) | |
| 12 | 11 | imbi1d | ⊢ ( 𝑤 = 𝑣 → ( ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ( 𝑥 ≈ 𝑣 → 𝜑 ) ) ) |
| 13 | 12 | albidv | ⊢ ( 𝑤 = 𝑣 → ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) ) ) |
| 14 | breq2 | ⊢ ( 𝑤 = suc 𝑣 → ( 𝑥 ≈ 𝑤 ↔ 𝑥 ≈ suc 𝑣 ) ) | |
| 15 | 14 | imbi1d | ⊢ ( 𝑤 = suc 𝑣 → ( ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ( 𝑥 ≈ suc 𝑣 → 𝜑 ) ) ) |
| 16 | 15 | albidv | ⊢ ( 𝑤 = suc 𝑣 → ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ≈ suc 𝑣 → 𝜑 ) ) ) |
| 17 | en0 | ⊢ ( 𝑥 ≈ ∅ ↔ 𝑥 = ∅ ) | |
| 18 | 5 1 | mpbiri | ⊢ ( 𝑥 = ∅ → 𝜑 ) |
| 19 | 17 18 | sylbi | ⊢ ( 𝑥 ≈ ∅ → 𝜑 ) |
| 20 | 19 | ax-gen | ⊢ ∀ 𝑥 ( 𝑥 ≈ ∅ → 𝜑 ) |
| 21 | peano2 | ⊢ ( 𝑣 ∈ ω → suc 𝑣 ∈ ω ) | |
| 22 | breq2 | ⊢ ( 𝑤 = suc 𝑣 → ( 𝑦 ≈ 𝑤 ↔ 𝑦 ≈ suc 𝑣 ) ) | |
| 23 | 22 | rspcev | ⊢ ( ( suc 𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣 ) → ∃ 𝑤 ∈ ω 𝑦 ≈ 𝑤 ) |
| 24 | 21 23 | sylan | ⊢ ( ( 𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣 ) → ∃ 𝑤 ∈ ω 𝑦 ≈ 𝑤 ) |
| 25 | isfi | ⊢ ( 𝑦 ∈ Fin ↔ ∃ 𝑤 ∈ ω 𝑦 ≈ 𝑤 ) | |
| 26 | 24 25 | sylibr | ⊢ ( ( 𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣 ) → 𝑦 ∈ Fin ) |
| 27 | 26 | 3adant2 | ⊢ ( ( 𝑣 ∈ ω ∧ ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) ∧ 𝑦 ≈ suc 𝑣 ) → 𝑦 ∈ Fin ) |
| 28 | dif1ennn | ⊢ ( ( 𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣 ∧ 𝑧 ∈ 𝑦 ) → ( 𝑦 ∖ { 𝑧 } ) ≈ 𝑣 ) | |
| 29 | 28 | 3expa | ⊢ ( ( ( 𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣 ) ∧ 𝑧 ∈ 𝑦 ) → ( 𝑦 ∖ { 𝑧 } ) ≈ 𝑣 ) |
| 30 | vex | ⊢ 𝑦 ∈ V | |
| 31 | 30 | difexi | ⊢ ( 𝑦 ∖ { 𝑧 } ) ∈ V |
| 32 | breq1 | ⊢ ( 𝑥 = ( 𝑦 ∖ { 𝑧 } ) → ( 𝑥 ≈ 𝑣 ↔ ( 𝑦 ∖ { 𝑧 } ) ≈ 𝑣 ) ) | |
| 33 | 32 2 | imbi12d | ⊢ ( 𝑥 = ( 𝑦 ∖ { 𝑧 } ) → ( ( 𝑥 ≈ 𝑣 → 𝜑 ) ↔ ( ( 𝑦 ∖ { 𝑧 } ) ≈ 𝑣 → 𝜒 ) ) ) |
| 34 | 31 33 | spcv | ⊢ ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → ( ( 𝑦 ∖ { 𝑧 } ) ≈ 𝑣 → 𝜒 ) ) |
| 35 | 29 34 | syl5com | ⊢ ( ( ( 𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣 ) ∧ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → 𝜒 ) ) |
| 36 | 35 | ralrimdva | ⊢ ( ( 𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣 ) → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → ∀ 𝑧 ∈ 𝑦 𝜒 ) ) |
| 37 | 36 | imp | ⊢ ( ( ( 𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣 ) ∧ ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) ) → ∀ 𝑧 ∈ 𝑦 𝜒 ) |
| 38 | 37 | an32s | ⊢ ( ( ( 𝑣 ∈ ω ∧ ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) ) ∧ 𝑦 ≈ suc 𝑣 ) → ∀ 𝑧 ∈ 𝑦 𝜒 ) |
| 39 | 38 | 3impa | ⊢ ( ( 𝑣 ∈ ω ∧ ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) ∧ 𝑦 ≈ suc 𝑣 ) → ∀ 𝑧 ∈ 𝑦 𝜒 ) |
| 40 | 27 39 6 | sylc | ⊢ ( ( 𝑣 ∈ ω ∧ ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) ∧ 𝑦 ≈ suc 𝑣 ) → 𝜃 ) |
| 41 | 40 | 3exp | ⊢ ( 𝑣 ∈ ω → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → ( 𝑦 ≈ suc 𝑣 → 𝜃 ) ) ) |
| 42 | 41 | alrimdv | ⊢ ( 𝑣 ∈ ω → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → ∀ 𝑦 ( 𝑦 ≈ suc 𝑣 → 𝜃 ) ) ) |
| 43 | breq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≈ suc 𝑣 ↔ 𝑦 ≈ suc 𝑣 ) ) | |
| 44 | 43 3 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ≈ suc 𝑣 → 𝜑 ) ↔ ( 𝑦 ≈ suc 𝑣 → 𝜃 ) ) ) |
| 45 | 44 | cbvalvw | ⊢ ( ∀ 𝑥 ( 𝑥 ≈ suc 𝑣 → 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ≈ suc 𝑣 → 𝜃 ) ) |
| 46 | 42 45 | imbitrrdi | ⊢ ( 𝑣 ∈ ω → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → ∀ 𝑥 ( 𝑥 ≈ suc 𝑣 → 𝜑 ) ) ) |
| 47 | 10 13 16 20 46 | finds1 | ⊢ ( 𝑤 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ) |
| 48 | 47 | 19.21bi | ⊢ ( 𝑤 ∈ ω → ( 𝑥 ≈ 𝑤 → 𝜑 ) ) |
| 49 | 48 | rexlimiv | ⊢ ( ∃ 𝑤 ∈ ω 𝑥 ≈ 𝑤 → 𝜑 ) |
| 50 | 7 49 | sylbi | ⊢ ( 𝑥 ∈ Fin → 𝜑 ) |
| 51 | 4 50 | vtoclga | ⊢ ( 𝐴 ∈ Fin → 𝜏 ) |