This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Schema for induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on the given set with any one element removed. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | findcard.1 | |- ( x = (/) -> ( ph <-> ps ) ) |
|
| findcard.2 | |- ( x = ( y \ { z } ) -> ( ph <-> ch ) ) |
||
| findcard.3 | |- ( x = y -> ( ph <-> th ) ) |
||
| findcard.4 | |- ( x = A -> ( ph <-> ta ) ) |
||
| findcard.5 | |- ps |
||
| findcard.6 | |- ( y e. Fin -> ( A. z e. y ch -> th ) ) |
||
| Assertion | findcard | |- ( A e. Fin -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | findcard.1 | |- ( x = (/) -> ( ph <-> ps ) ) |
|
| 2 | findcard.2 | |- ( x = ( y \ { z } ) -> ( ph <-> ch ) ) |
|
| 3 | findcard.3 | |- ( x = y -> ( ph <-> th ) ) |
|
| 4 | findcard.4 | |- ( x = A -> ( ph <-> ta ) ) |
|
| 5 | findcard.5 | |- ps |
|
| 6 | findcard.6 | |- ( y e. Fin -> ( A. z e. y ch -> th ) ) |
|
| 7 | isfi | |- ( x e. Fin <-> E. w e. _om x ~~ w ) |
|
| 8 | breq2 | |- ( w = (/) -> ( x ~~ w <-> x ~~ (/) ) ) |
|
| 9 | 8 | imbi1d | |- ( w = (/) -> ( ( x ~~ w -> ph ) <-> ( x ~~ (/) -> ph ) ) ) |
| 10 | 9 | albidv | |- ( w = (/) -> ( A. x ( x ~~ w -> ph ) <-> A. x ( x ~~ (/) -> ph ) ) ) |
| 11 | breq2 | |- ( w = v -> ( x ~~ w <-> x ~~ v ) ) |
|
| 12 | 11 | imbi1d | |- ( w = v -> ( ( x ~~ w -> ph ) <-> ( x ~~ v -> ph ) ) ) |
| 13 | 12 | albidv | |- ( w = v -> ( A. x ( x ~~ w -> ph ) <-> A. x ( x ~~ v -> ph ) ) ) |
| 14 | breq2 | |- ( w = suc v -> ( x ~~ w <-> x ~~ suc v ) ) |
|
| 15 | 14 | imbi1d | |- ( w = suc v -> ( ( x ~~ w -> ph ) <-> ( x ~~ suc v -> ph ) ) ) |
| 16 | 15 | albidv | |- ( w = suc v -> ( A. x ( x ~~ w -> ph ) <-> A. x ( x ~~ suc v -> ph ) ) ) |
| 17 | en0 | |- ( x ~~ (/) <-> x = (/) ) |
|
| 18 | 5 1 | mpbiri | |- ( x = (/) -> ph ) |
| 19 | 17 18 | sylbi | |- ( x ~~ (/) -> ph ) |
| 20 | 19 | ax-gen | |- A. x ( x ~~ (/) -> ph ) |
| 21 | peano2 | |- ( v e. _om -> suc v e. _om ) |
|
| 22 | breq2 | |- ( w = suc v -> ( y ~~ w <-> y ~~ suc v ) ) |
|
| 23 | 22 | rspcev | |- ( ( suc v e. _om /\ y ~~ suc v ) -> E. w e. _om y ~~ w ) |
| 24 | 21 23 | sylan | |- ( ( v e. _om /\ y ~~ suc v ) -> E. w e. _om y ~~ w ) |
| 25 | isfi | |- ( y e. Fin <-> E. w e. _om y ~~ w ) |
|
| 26 | 24 25 | sylibr | |- ( ( v e. _om /\ y ~~ suc v ) -> y e. Fin ) |
| 27 | 26 | 3adant2 | |- ( ( v e. _om /\ A. x ( x ~~ v -> ph ) /\ y ~~ suc v ) -> y e. Fin ) |
| 28 | dif1ennn | |- ( ( v e. _om /\ y ~~ suc v /\ z e. y ) -> ( y \ { z } ) ~~ v ) |
|
| 29 | 28 | 3expa | |- ( ( ( v e. _om /\ y ~~ suc v ) /\ z e. y ) -> ( y \ { z } ) ~~ v ) |
| 30 | vex | |- y e. _V |
|
| 31 | 30 | difexi | |- ( y \ { z } ) e. _V |
| 32 | breq1 | |- ( x = ( y \ { z } ) -> ( x ~~ v <-> ( y \ { z } ) ~~ v ) ) |
|
| 33 | 32 2 | imbi12d | |- ( x = ( y \ { z } ) -> ( ( x ~~ v -> ph ) <-> ( ( y \ { z } ) ~~ v -> ch ) ) ) |
| 34 | 31 33 | spcv | |- ( A. x ( x ~~ v -> ph ) -> ( ( y \ { z } ) ~~ v -> ch ) ) |
| 35 | 29 34 | syl5com | |- ( ( ( v e. _om /\ y ~~ suc v ) /\ z e. y ) -> ( A. x ( x ~~ v -> ph ) -> ch ) ) |
| 36 | 35 | ralrimdva | |- ( ( v e. _om /\ y ~~ suc v ) -> ( A. x ( x ~~ v -> ph ) -> A. z e. y ch ) ) |
| 37 | 36 | imp | |- ( ( ( v e. _om /\ y ~~ suc v ) /\ A. x ( x ~~ v -> ph ) ) -> A. z e. y ch ) |
| 38 | 37 | an32s | |- ( ( ( v e. _om /\ A. x ( x ~~ v -> ph ) ) /\ y ~~ suc v ) -> A. z e. y ch ) |
| 39 | 38 | 3impa | |- ( ( v e. _om /\ A. x ( x ~~ v -> ph ) /\ y ~~ suc v ) -> A. z e. y ch ) |
| 40 | 27 39 6 | sylc | |- ( ( v e. _om /\ A. x ( x ~~ v -> ph ) /\ y ~~ suc v ) -> th ) |
| 41 | 40 | 3exp | |- ( v e. _om -> ( A. x ( x ~~ v -> ph ) -> ( y ~~ suc v -> th ) ) ) |
| 42 | 41 | alrimdv | |- ( v e. _om -> ( A. x ( x ~~ v -> ph ) -> A. y ( y ~~ suc v -> th ) ) ) |
| 43 | breq1 | |- ( x = y -> ( x ~~ suc v <-> y ~~ suc v ) ) |
|
| 44 | 43 3 | imbi12d | |- ( x = y -> ( ( x ~~ suc v -> ph ) <-> ( y ~~ suc v -> th ) ) ) |
| 45 | 44 | cbvalvw | |- ( A. x ( x ~~ suc v -> ph ) <-> A. y ( y ~~ suc v -> th ) ) |
| 46 | 42 45 | imbitrrdi | |- ( v e. _om -> ( A. x ( x ~~ v -> ph ) -> A. x ( x ~~ suc v -> ph ) ) ) |
| 47 | 10 13 16 20 46 | finds1 | |- ( w e. _om -> A. x ( x ~~ w -> ph ) ) |
| 48 | 47 | 19.21bi | |- ( w e. _om -> ( x ~~ w -> ph ) ) |
| 49 | 48 | rexlimiv | |- ( E. w e. _om x ~~ w -> ph ) |
| 50 | 7 49 | sylbi | |- ( x e. Fin -> ph ) |
| 51 | 4 50 | vtoclga | |- ( A e. Fin -> ta ) |