This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a chain of finite sets, dominance and subset coincide. (Contributed by Stefan O'Rear, 8-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fincssdom | |- ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( A ~<_ B <-> A C_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | |- ( ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) /\ -. A C_ B ) -> A e. Fin ) |
|
| 2 | simpr | |- ( ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) /\ -. A C_ B ) -> -. A C_ B ) |
|
| 3 | simpl3 | |- ( ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) /\ -. A C_ B ) -> ( A C_ B \/ B C_ A ) ) |
|
| 4 | orel1 | |- ( -. A C_ B -> ( ( A C_ B \/ B C_ A ) -> B C_ A ) ) |
|
| 5 | 2 3 4 | sylc | |- ( ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) /\ -. A C_ B ) -> B C_ A ) |
| 6 | dfpss3 | |- ( B C. A <-> ( B C_ A /\ -. A C_ B ) ) |
|
| 7 | 5 2 6 | sylanbrc | |- ( ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) /\ -. A C_ B ) -> B C. A ) |
| 8 | php3 | |- ( ( A e. Fin /\ B C. A ) -> B ~< A ) |
|
| 9 | 1 7 8 | syl2anc | |- ( ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) /\ -. A C_ B ) -> B ~< A ) |
| 10 | 9 | ex | |- ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( -. A C_ B -> B ~< A ) ) |
| 11 | domnsym | |- ( A ~<_ B -> -. B ~< A ) |
|
| 12 | 11 | con2i | |- ( B ~< A -> -. A ~<_ B ) |
| 13 | 10 12 | syl6 | |- ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( -. A C_ B -> -. A ~<_ B ) ) |
| 14 | 13 | con4d | |- ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( A ~<_ B -> A C_ B ) ) |
| 15 | ssdomg | |- ( B e. Fin -> ( A C_ B -> A ~<_ B ) ) |
|
| 16 | 15 | 3ad2ant2 | |- ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( A C_ B -> A ~<_ B ) ) |
| 17 | 14 16 | impbid | |- ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( A ~<_ B <-> A C_ B ) ) |