This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . Discharge hypotheses. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin23lem33.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | |
| Assertion | fin23lem33 | ⊢ ( 𝐺 ∈ 𝐹 → ∃ 𝑓 ∀ 𝑏 ( ( 𝑏 : ω –1-1→ V ∧ ∪ ran 𝑏 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑏 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑏 ) ⊊ ∪ ran 𝑏 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem33.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | |
| 2 | fveq2 | ⊢ ( 𝑗 = 𝑐 → ( 𝑒 ‘ 𝑗 ) = ( 𝑒 ‘ 𝑐 ) ) | |
| 3 | 2 | ineq1d | ⊢ ( 𝑗 = 𝑐 → ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑘 ) ) |
| 4 | 3 | eqeq1d | ⊢ ( 𝑗 = 𝑐 → ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ ↔ ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑘 ) = ∅ ) ) |
| 5 | 4 3 | ifbieq2d | ⊢ ( 𝑗 = 𝑐 → if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) = if ( ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑘 ) ) ) |
| 6 | ineq2 | ⊢ ( 𝑘 = 𝑑 → ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑘 ) = ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( 𝑘 = 𝑑 → ( ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑘 ) = ∅ ↔ ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) = ∅ ) ) |
| 8 | id | ⊢ ( 𝑘 = 𝑑 → 𝑘 = 𝑑 ) | |
| 9 | 7 8 6 | ifbieq12d | ⊢ ( 𝑘 = 𝑑 → if ( ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑘 ) ) = if ( ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) = ∅ , 𝑑 , ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) ) ) |
| 10 | 5 9 | cbvmpov | ⊢ ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) = ( 𝑐 ∈ ω , 𝑑 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) = ∅ , 𝑑 , ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) ) ) |
| 11 | eqid | ⊢ ∪ ran 𝑒 = ∪ ran 𝑒 | |
| 12 | seqomeq12 | ⊢ ( ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) = ( 𝑐 ∈ ω , 𝑑 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) = ∅ , 𝑑 , ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) ) ) ∧ ∪ ran 𝑒 = ∪ ran 𝑒 ) → seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) = seqω ( ( 𝑐 ∈ ω , 𝑑 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) = ∅ , 𝑑 , ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) ) ) , ∪ ran 𝑒 ) ) | |
| 13 | 10 11 12 | mp2an | ⊢ seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) = seqω ( ( 𝑐 ∈ ω , 𝑑 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) = ∅ , 𝑑 , ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) ) ) , ∪ ran 𝑒 ) |
| 14 | fveq2 | ⊢ ( 𝑙 = 𝑦 → ( 𝑒 ‘ 𝑙 ) = ( 𝑒 ‘ 𝑦 ) ) | |
| 15 | 14 | sseq2d | ⊢ ( 𝑙 = 𝑦 → ( ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) ↔ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑦 ) ) ) |
| 16 | 15 | cbvrabv | ⊢ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } = { 𝑦 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑦 ) } |
| 17 | eqid | ⊢ ( 𝑔 ∈ ω ↦ ( ℩ 𝑥 ∈ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ( 𝑥 ∩ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ≈ 𝑔 ) ) = ( 𝑔 ∈ ω ↦ ( ℩ 𝑥 ∈ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ( 𝑥 ∩ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ≈ 𝑔 ) ) | |
| 18 | eqid | ⊢ ( 𝑔 ∈ ω ↦ ( ℩ 𝑥 ∈ ( ω ∖ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ( 𝑥 ∩ ( ω ∖ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ) ≈ 𝑔 ) ) = ( 𝑔 ∈ ω ↦ ( ℩ 𝑥 ∈ ( ω ∖ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ( 𝑥 ∩ ( ω ∖ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ) ≈ 𝑔 ) ) | |
| 19 | eqid | ⊢ if ( { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ∈ Fin , ( 𝑒 ∘ ( 𝑔 ∈ ω ↦ ( ℩ 𝑥 ∈ ( ω ∖ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ( 𝑥 ∩ ( ω ∖ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ) ≈ 𝑔 ) ) ) , ( ( 𝑖 ∈ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ↦ ( ( 𝑒 ‘ 𝑖 ) ∖ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ) ) ∘ ( 𝑔 ∈ ω ↦ ( ℩ 𝑥 ∈ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ( 𝑥 ∩ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ≈ 𝑔 ) ) ) ) = if ( { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ∈ Fin , ( 𝑒 ∘ ( 𝑔 ∈ ω ↦ ( ℩ 𝑥 ∈ ( ω ∖ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ( 𝑥 ∩ ( ω ∖ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ) ≈ 𝑔 ) ) ) , ( ( 𝑖 ∈ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ↦ ( ( 𝑒 ‘ 𝑖 ) ∖ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ) ) ∘ ( 𝑔 ∈ ω ↦ ( ℩ 𝑥 ∈ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ( 𝑥 ∩ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ≈ 𝑔 ) ) ) ) | |
| 20 | 13 1 16 17 18 19 | fin23lem32 | ⊢ ( 𝐺 ∈ 𝐹 → ∃ 𝑓 ∀ 𝑏 ( ( 𝑏 : ω –1-1→ V ∧ ∪ ran 𝑏 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑏 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑏 ) ⊊ ∪ ran 𝑏 ) ) ) |