This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . Each step of U is a decrease. (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| Assertion | fin23lem13 | ⊢ ( 𝐴 ∈ ω → ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑈 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| 2 | 1 | fin23lem12 | ⊢ ( 𝐴 ∈ ω → ( 𝑈 ‘ suc 𝐴 ) = if ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ , ( 𝑈 ‘ 𝐴 ) , ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) ) |
| 3 | sseq1 | ⊢ ( ( 𝑈 ‘ 𝐴 ) = if ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ , ( 𝑈 ‘ 𝐴 ) , ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) → ( ( 𝑈 ‘ 𝐴 ) ⊆ ( 𝑈 ‘ 𝐴 ) ↔ if ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ , ( 𝑈 ‘ 𝐴 ) , ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) ⊆ ( 𝑈 ‘ 𝐴 ) ) ) | |
| 4 | sseq1 | ⊢ ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = if ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ , ( 𝑈 ‘ 𝐴 ) , ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) → ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ⊆ ( 𝑈 ‘ 𝐴 ) ↔ if ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ , ( 𝑈 ‘ 𝐴 ) , ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) ⊆ ( 𝑈 ‘ 𝐴 ) ) ) | |
| 5 | ssid | ⊢ ( 𝑈 ‘ 𝐴 ) ⊆ ( 𝑈 ‘ 𝐴 ) | |
| 6 | inss2 | ⊢ ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ⊆ ( 𝑈 ‘ 𝐴 ) | |
| 7 | 3 4 5 6 | keephyp | ⊢ if ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ , ( 𝑈 ‘ 𝐴 ) , ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) ⊆ ( 𝑈 ‘ 𝐴 ) |
| 8 | 2 7 | eqsstrdi | ⊢ ( 𝐴 ∈ ω → ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑈 ‘ 𝐴 ) ) |