This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty finite set of real numbers is bounded below. (Contributed by Glauco Siliprandi, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fiminre2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red | ⊢ ( 𝐴 = ∅ → 0 ∈ ℝ ) | |
| 2 | rzal | ⊢ ( 𝐴 = ∅ → ∀ 𝑦 ∈ 𝐴 0 ≤ 𝑦 ) | |
| 3 | breq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ≤ 𝑦 ↔ 0 ≤ 𝑦 ) ) | |
| 4 | 3 | ralbidv | ⊢ ( 𝑥 = 0 → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 0 ≤ 𝑦 ) ) |
| 5 | 4 | rspcev | ⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 0 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| 6 | 1 2 5 | syl2anc | ⊢ ( 𝐴 = ∅ → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| 7 | 6 | adantl | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ 𝐴 = ∅ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| 8 | neqne | ⊢ ( ¬ 𝐴 = ∅ → 𝐴 ≠ ∅ ) | |
| 9 | 8 | adantl | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ ¬ 𝐴 = ∅ ) → 𝐴 ≠ ∅ ) |
| 10 | simpll | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ ℝ ) | |
| 11 | simplr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ Fin ) | |
| 12 | simpr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) | |
| 13 | fiminre | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) | |
| 14 | 10 11 12 13 | syl3anc | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| 15 | ssrexv | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) | |
| 16 | 10 14 15 | sylc | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| 17 | 9 16 | syldan | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ ¬ 𝐴 = ∅ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| 18 | 7 17 | pm2.61dan | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |