This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite set of real numbers has a maximum. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Steven Nguyen, 3-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fimaxre | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso | ⊢ < Or ℝ | |
| 2 | soss | ⊢ ( 𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴 ) ) | |
| 3 | 1 2 | mpi | ⊢ ( 𝐴 ⊆ ℝ → < Or 𝐴 ) |
| 4 | fimaxg | ⊢ ( ( < Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑦 < 𝑥 ) ) | |
| 5 | 3 4 | syl3an1 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑦 < 𝑥 ) ) |
| 6 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) | |
| 7 | 6 | adantrl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ ℝ ) |
| 8 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) | |
| 9 | 8 | adantrr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∈ ℝ ) |
| 10 | 7 9 | leloed | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑦 ≤ 𝑥 ↔ ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) ) |
| 11 | orcom | ⊢ ( ( 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ↔ ( 𝑦 < 𝑥 ∨ 𝑥 = 𝑦 ) ) | |
| 12 | equcom | ⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) | |
| 13 | 12 | orbi2i | ⊢ ( ( 𝑦 < 𝑥 ∨ 𝑥 = 𝑦 ) ↔ ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) |
| 14 | 11 13 | bitri | ⊢ ( ( 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ↔ ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) |
| 15 | 14 | a1i | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ↔ ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) ) |
| 16 | neor | ⊢ ( ( 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ↔ ( 𝑥 ≠ 𝑦 → 𝑦 < 𝑥 ) ) | |
| 17 | 16 | a1i | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ↔ ( 𝑥 ≠ 𝑦 → 𝑦 < 𝑥 ) ) ) |
| 18 | 10 15 17 | 3bitr2d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑦 ≤ 𝑥 ↔ ( 𝑥 ≠ 𝑦 → 𝑦 < 𝑥 ) ) ) |
| 19 | 18 | biimprd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 ≠ 𝑦 → 𝑦 < 𝑥 ) → 𝑦 ≤ 𝑥 ) ) |
| 20 | 19 | anassrs | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ≠ 𝑦 → 𝑦 < 𝑥 ) → 𝑦 ≤ 𝑥 ) ) |
| 21 | 20 | ralimdva | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑦 < 𝑥 ) → ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 22 | 21 | reximdva | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑦 < 𝑥 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 23 | 22 | 3ad2ant1 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑦 < 𝑥 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 24 | 5 23 | mpd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |