This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fiming | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑥 𝑅 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fimin2g | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) | |
| 2 | nesym | ⊢ ( 𝑥 ≠ 𝑦 ↔ ¬ 𝑦 = 𝑥 ) | |
| 3 | 2 | imbi1i | ⊢ ( ( 𝑥 ≠ 𝑦 → 𝑥 𝑅 𝑦 ) ↔ ( ¬ 𝑦 = 𝑥 → 𝑥 𝑅 𝑦 ) ) |
| 4 | pm4.64 | ⊢ ( ( ¬ 𝑦 = 𝑥 → 𝑥 𝑅 𝑦 ) ↔ ( 𝑦 = 𝑥 ∨ 𝑥 𝑅 𝑦 ) ) | |
| 5 | 3 4 | bitri | ⊢ ( ( 𝑥 ≠ 𝑦 → 𝑥 𝑅 𝑦 ) ↔ ( 𝑦 = 𝑥 ∨ 𝑥 𝑅 𝑦 ) ) |
| 6 | sotric | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝑦 𝑅 𝑥 ↔ ¬ ( 𝑦 = 𝑥 ∨ 𝑥 𝑅 𝑦 ) ) ) | |
| 7 | 6 | ancom2s | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑦 𝑅 𝑥 ↔ ¬ ( 𝑦 = 𝑥 ∨ 𝑥 𝑅 𝑦 ) ) ) |
| 8 | 7 | con2bid | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑦 = 𝑥 ∨ 𝑥 𝑅 𝑦 ) ↔ ¬ 𝑦 𝑅 𝑥 ) ) |
| 9 | 5 8 | bitrid | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 ≠ 𝑦 → 𝑥 𝑅 𝑦 ) ↔ ¬ 𝑦 𝑅 𝑥 ) ) |
| 10 | 9 | anassrs | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ≠ 𝑦 → 𝑥 𝑅 𝑦 ) ↔ ¬ 𝑦 𝑅 𝑥 ) ) |
| 11 | 10 | ralbidva | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑥 𝑅 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) ) |
| 12 | 11 | rexbidva | ⊢ ( 𝑅 Or 𝐴 → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑥 𝑅 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) ) |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑥 𝑅 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) ) |
| 14 | 1 13 | mpbird | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑥 𝑅 𝑦 ) ) |