This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty finite set of real numbers has a minimum. Analogous to fimaxre . (Contributed by AV, 9-Aug-2020) (Proof shortened by Steven Nguyen, 3-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fiminre | |- ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A x <_ y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso | |- < Or RR |
|
| 2 | soss | |- ( A C_ RR -> ( < Or RR -> < Or A ) ) |
|
| 3 | 1 2 | mpi | |- ( A C_ RR -> < Or A ) |
| 4 | fiming | |- ( ( < Or A /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A ( x =/= y -> x < y ) ) |
|
| 5 | 3 4 | syl3an1 | |- ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A ( x =/= y -> x < y ) ) |
| 6 | ssel2 | |- ( ( A C_ RR /\ x e. A ) -> x e. RR ) |
|
| 7 | 6 | adantr | |- ( ( ( A C_ RR /\ x e. A ) /\ y e. A ) -> x e. RR ) |
| 8 | ssel2 | |- ( ( A C_ RR /\ y e. A ) -> y e. RR ) |
|
| 9 | 8 | adantlr | |- ( ( ( A C_ RR /\ x e. A ) /\ y e. A ) -> y e. RR ) |
| 10 | 7 9 | leloed | |- ( ( ( A C_ RR /\ x e. A ) /\ y e. A ) -> ( x <_ y <-> ( x < y \/ x = y ) ) ) |
| 11 | orcom | |- ( ( x = y \/ x < y ) <-> ( x < y \/ x = y ) ) |
|
| 12 | 11 | a1i | |- ( ( ( A C_ RR /\ x e. A ) /\ y e. A ) -> ( ( x = y \/ x < y ) <-> ( x < y \/ x = y ) ) ) |
| 13 | neor | |- ( ( x = y \/ x < y ) <-> ( x =/= y -> x < y ) ) |
|
| 14 | 13 | a1i | |- ( ( ( A C_ RR /\ x e. A ) /\ y e. A ) -> ( ( x = y \/ x < y ) <-> ( x =/= y -> x < y ) ) ) |
| 15 | 10 12 14 | 3bitr2d | |- ( ( ( A C_ RR /\ x e. A ) /\ y e. A ) -> ( x <_ y <-> ( x =/= y -> x < y ) ) ) |
| 16 | 15 | biimprd | |- ( ( ( A C_ RR /\ x e. A ) /\ y e. A ) -> ( ( x =/= y -> x < y ) -> x <_ y ) ) |
| 17 | 16 | ralimdva | |- ( ( A C_ RR /\ x e. A ) -> ( A. y e. A ( x =/= y -> x < y ) -> A. y e. A x <_ y ) ) |
| 18 | 17 | reximdva | |- ( A C_ RR -> ( E. x e. A A. y e. A ( x =/= y -> x < y ) -> E. x e. A A. y e. A x <_ y ) ) |
| 19 | 18 | 3ad2ant1 | |- ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) -> ( E. x e. A A. y e. A ( x =/= y -> x < y ) -> E. x e. A A. y e. A x <_ y ) ) |
| 20 | 5 19 | mpd | |- ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A x <_ y ) |