This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 29-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fimaxg | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑦 𝑅 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fimax2g | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ) | |
| 2 | df-ne | ⊢ ( 𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦 ) | |
| 3 | 2 | imbi1i | ⊢ ( ( 𝑥 ≠ 𝑦 → 𝑦 𝑅 𝑥 ) ↔ ( ¬ 𝑥 = 𝑦 → 𝑦 𝑅 𝑥 ) ) |
| 4 | pm4.64 | ⊢ ( ( ¬ 𝑥 = 𝑦 → 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) | |
| 5 | 3 4 | bitri | ⊢ ( ( 𝑥 ≠ 𝑦 → 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
| 6 | sotric | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝑦 ↔ ¬ ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) | |
| 7 | 6 | con2bid | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ¬ 𝑥 𝑅 𝑦 ) ) |
| 8 | 5 7 | bitrid | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 ≠ 𝑦 → 𝑦 𝑅 𝑥 ) ↔ ¬ 𝑥 𝑅 𝑦 ) ) |
| 9 | 8 | anassrs | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ≠ 𝑦 → 𝑦 𝑅 𝑥 ) ↔ ¬ 𝑥 𝑅 𝑦 ) ) |
| 10 | 9 | ralbidva | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ) ) |
| 11 | 10 | rexbidva | ⊢ ( 𝑅 Or 𝐴 → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑦 𝑅 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ) ) |
| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑦 𝑅 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ) ) |
| 13 | 1 12 | mpbird | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑦 𝑅 𝑥 ) ) |