This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite set of real numbers has a maximum. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Steven Nguyen, 3-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fimaxre | |- ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A y <_ x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso | |- < Or RR |
|
| 2 | soss | |- ( A C_ RR -> ( < Or RR -> < Or A ) ) |
|
| 3 | 1 2 | mpi | |- ( A C_ RR -> < Or A ) |
| 4 | fimaxg | |- ( ( < Or A /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A ( x =/= y -> y < x ) ) |
|
| 5 | 3 4 | syl3an1 | |- ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A ( x =/= y -> y < x ) ) |
| 6 | ssel2 | |- ( ( A C_ RR /\ y e. A ) -> y e. RR ) |
|
| 7 | 6 | adantrl | |- ( ( A C_ RR /\ ( x e. A /\ y e. A ) ) -> y e. RR ) |
| 8 | ssel2 | |- ( ( A C_ RR /\ x e. A ) -> x e. RR ) |
|
| 9 | 8 | adantrr | |- ( ( A C_ RR /\ ( x e. A /\ y e. A ) ) -> x e. RR ) |
| 10 | 7 9 | leloed | |- ( ( A C_ RR /\ ( x e. A /\ y e. A ) ) -> ( y <_ x <-> ( y < x \/ y = x ) ) ) |
| 11 | orcom | |- ( ( x = y \/ y < x ) <-> ( y < x \/ x = y ) ) |
|
| 12 | equcom | |- ( x = y <-> y = x ) |
|
| 13 | 12 | orbi2i | |- ( ( y < x \/ x = y ) <-> ( y < x \/ y = x ) ) |
| 14 | 11 13 | bitri | |- ( ( x = y \/ y < x ) <-> ( y < x \/ y = x ) ) |
| 15 | 14 | a1i | |- ( ( A C_ RR /\ ( x e. A /\ y e. A ) ) -> ( ( x = y \/ y < x ) <-> ( y < x \/ y = x ) ) ) |
| 16 | neor | |- ( ( x = y \/ y < x ) <-> ( x =/= y -> y < x ) ) |
|
| 17 | 16 | a1i | |- ( ( A C_ RR /\ ( x e. A /\ y e. A ) ) -> ( ( x = y \/ y < x ) <-> ( x =/= y -> y < x ) ) ) |
| 18 | 10 15 17 | 3bitr2d | |- ( ( A C_ RR /\ ( x e. A /\ y e. A ) ) -> ( y <_ x <-> ( x =/= y -> y < x ) ) ) |
| 19 | 18 | biimprd | |- ( ( A C_ RR /\ ( x e. A /\ y e. A ) ) -> ( ( x =/= y -> y < x ) -> y <_ x ) ) |
| 20 | 19 | anassrs | |- ( ( ( A C_ RR /\ x e. A ) /\ y e. A ) -> ( ( x =/= y -> y < x ) -> y <_ x ) ) |
| 21 | 20 | ralimdva | |- ( ( A C_ RR /\ x e. A ) -> ( A. y e. A ( x =/= y -> y < x ) -> A. y e. A y <_ x ) ) |
| 22 | 21 | reximdva | |- ( A C_ RR -> ( E. x e. A A. y e. A ( x =/= y -> y < x ) -> E. x e. A A. y e. A y <_ x ) ) |
| 23 | 22 | 3ad2ant1 | |- ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) -> ( E. x e. A A. y e. A ( x =/= y -> y < x ) -> E. x e. A A. y e. A y <_ x ) ) |
| 24 | 5 23 | mpd | |- ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A y <_ x ) |