This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 29-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fimaxg | |- ( ( R Or A /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A ( x =/= y -> y R x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fimax2g | |- ( ( R Or A /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A -. x R y ) |
|
| 2 | df-ne | |- ( x =/= y <-> -. x = y ) |
|
| 3 | 2 | imbi1i | |- ( ( x =/= y -> y R x ) <-> ( -. x = y -> y R x ) ) |
| 4 | pm4.64 | |- ( ( -. x = y -> y R x ) <-> ( x = y \/ y R x ) ) |
|
| 5 | 3 4 | bitri | |- ( ( x =/= y -> y R x ) <-> ( x = y \/ y R x ) ) |
| 6 | sotric | |- ( ( R Or A /\ ( x e. A /\ y e. A ) ) -> ( x R y <-> -. ( x = y \/ y R x ) ) ) |
|
| 7 | 6 | con2bid | |- ( ( R Or A /\ ( x e. A /\ y e. A ) ) -> ( ( x = y \/ y R x ) <-> -. x R y ) ) |
| 8 | 5 7 | bitrid | |- ( ( R Or A /\ ( x e. A /\ y e. A ) ) -> ( ( x =/= y -> y R x ) <-> -. x R y ) ) |
| 9 | 8 | anassrs | |- ( ( ( R Or A /\ x e. A ) /\ y e. A ) -> ( ( x =/= y -> y R x ) <-> -. x R y ) ) |
| 10 | 9 | ralbidva | |- ( ( R Or A /\ x e. A ) -> ( A. y e. A ( x =/= y -> y R x ) <-> A. y e. A -. x R y ) ) |
| 11 | 10 | rexbidva | |- ( R Or A -> ( E. x e. A A. y e. A ( x =/= y -> y R x ) <-> E. x e. A A. y e. A -. x R y ) ) |
| 12 | 11 | 3ad2ant1 | |- ( ( R Or A /\ A e. Fin /\ A =/= (/) ) -> ( E. x e. A A. y e. A ( x =/= y -> y R x ) <-> E. x e. A A. y e. A -. x R y ) ) |
| 13 | 1 12 | mpbird | |- ( ( R Or A /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A ( x =/= y -> y R x ) ) |