This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma showing existence and closure of supremum of a finite set. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fisupg | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fimaxg | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑦 𝑅 𝑥 ) ) | |
| 2 | sotrieq2 | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 = 𝑦 ↔ ( ¬ 𝑥 𝑅 𝑦 ∧ ¬ 𝑦 𝑅 𝑥 ) ) ) | |
| 3 | 2 | simprbda | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 = 𝑦 ) → ¬ 𝑥 𝑅 𝑦 ) |
| 4 | 3 | ex | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 = 𝑦 → ¬ 𝑥 𝑅 𝑦 ) ) |
| 5 | 4 | anassrs | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 = 𝑦 → ¬ 𝑥 𝑅 𝑦 ) ) |
| 6 | 5 | a1dd | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 = 𝑦 → ( ( 𝑥 ≠ 𝑦 → 𝑦 𝑅 𝑥 ) → ¬ 𝑥 𝑅 𝑦 ) ) ) |
| 7 | pm2.27 | ⊢ ( 𝑥 ≠ 𝑦 → ( ( 𝑥 ≠ 𝑦 → 𝑦 𝑅 𝑥 ) → 𝑦 𝑅 𝑥 ) ) | |
| 8 | so2nr | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ¬ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) | |
| 9 | pm3.21 | ⊢ ( 𝑦 𝑅 𝑥 → ( 𝑥 𝑅 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) | |
| 10 | 9 | con3d | ⊢ ( 𝑦 𝑅 𝑥 → ( ¬ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → ¬ 𝑥 𝑅 𝑦 ) ) |
| 11 | 8 10 | syl5com | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑦 𝑅 𝑥 → ¬ 𝑥 𝑅 𝑦 ) ) |
| 12 | 11 | anassrs | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 𝑅 𝑥 → ¬ 𝑥 𝑅 𝑦 ) ) |
| 13 | 7 12 | syl9r | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ≠ 𝑦 → ( ( 𝑥 ≠ 𝑦 → 𝑦 𝑅 𝑥 ) → ¬ 𝑥 𝑅 𝑦 ) ) ) |
| 14 | 6 13 | pm2.61dne | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ≠ 𝑦 → 𝑦 𝑅 𝑥 ) → ¬ 𝑥 𝑅 𝑦 ) ) |
| 15 | 14 | ralimdva | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑦 𝑅 𝑥 ) → ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ) ) |
| 16 | breq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝑦 𝑅 𝑧 ↔ 𝑦 𝑅 𝑥 ) ) | |
| 17 | 16 | rspcev | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 𝑅 𝑥 ) → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) |
| 18 | 17 | ex | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) |
| 19 | 18 | ralrimivw | ⊢ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) |
| 20 | 19 | adantl | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) |
| 21 | 15 20 | jctird | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑦 𝑅 𝑥 ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) ) ) |
| 22 | 21 | reximdva | ⊢ ( 𝑅 Or 𝐴 → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑦 𝑅 𝑥 ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) ) ) |
| 23 | 22 | 3ad2ant1 | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑦 𝑅 𝑥 ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) ) ) |
| 24 | 1 23 | mpd | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) ) |