This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of all cluster points of a filter. (Contributed by Jeff Hankins, 10-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fclsval.x | |- X = U. J |
|
| Assertion | fclsval | |- ( ( J e. Top /\ F e. ( Fil ` Y ) ) -> ( J fClus F ) = if ( X = Y , |^|_ t e. F ( ( cls ` J ) ` t ) , (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fclsval.x | |- X = U. J |
|
| 2 | simpl | |- ( ( J e. Top /\ F e. ( Fil ` Y ) ) -> J e. Top ) |
|
| 3 | fvssunirn | |- ( Fil ` Y ) C_ U. ran Fil |
|
| 4 | 3 | sseli | |- ( F e. ( Fil ` Y ) -> F e. U. ran Fil ) |
| 5 | 4 | adantl | |- ( ( J e. Top /\ F e. ( Fil ` Y ) ) -> F e. U. ran Fil ) |
| 6 | filn0 | |- ( F e. ( Fil ` Y ) -> F =/= (/) ) |
|
| 7 | 6 | adantl | |- ( ( J e. Top /\ F e. ( Fil ` Y ) ) -> F =/= (/) ) |
| 8 | fvex | |- ( ( cls ` J ) ` t ) e. _V |
|
| 9 | 8 | rgenw | |- A. t e. F ( ( cls ` J ) ` t ) e. _V |
| 10 | iinexg | |- ( ( F =/= (/) /\ A. t e. F ( ( cls ` J ) ` t ) e. _V ) -> |^|_ t e. F ( ( cls ` J ) ` t ) e. _V ) |
|
| 11 | 7 9 10 | sylancl | |- ( ( J e. Top /\ F e. ( Fil ` Y ) ) -> |^|_ t e. F ( ( cls ` J ) ` t ) e. _V ) |
| 12 | 0ex | |- (/) e. _V |
|
| 13 | ifcl | |- ( ( |^|_ t e. F ( ( cls ` J ) ` t ) e. _V /\ (/) e. _V ) -> if ( X = U. F , |^|_ t e. F ( ( cls ` J ) ` t ) , (/) ) e. _V ) |
|
| 14 | 11 12 13 | sylancl | |- ( ( J e. Top /\ F e. ( Fil ` Y ) ) -> if ( X = U. F , |^|_ t e. F ( ( cls ` J ) ` t ) , (/) ) e. _V ) |
| 15 | unieq | |- ( j = J -> U. j = U. J ) |
|
| 16 | 15 1 | eqtr4di | |- ( j = J -> U. j = X ) |
| 17 | unieq | |- ( f = F -> U. f = U. F ) |
|
| 18 | 16 17 | eqeqan12d | |- ( ( j = J /\ f = F ) -> ( U. j = U. f <-> X = U. F ) ) |
| 19 | iineq1 | |- ( f = F -> |^|_ t e. f ( ( cls ` j ) ` t ) = |^|_ t e. F ( ( cls ` j ) ` t ) ) |
|
| 20 | 19 | adantl | |- ( ( j = J /\ f = F ) -> |^|_ t e. f ( ( cls ` j ) ` t ) = |^|_ t e. F ( ( cls ` j ) ` t ) ) |
| 21 | simpll | |- ( ( ( j = J /\ f = F ) /\ t e. F ) -> j = J ) |
|
| 22 | 21 | fveq2d | |- ( ( ( j = J /\ f = F ) /\ t e. F ) -> ( cls ` j ) = ( cls ` J ) ) |
| 23 | 22 | fveq1d | |- ( ( ( j = J /\ f = F ) /\ t e. F ) -> ( ( cls ` j ) ` t ) = ( ( cls ` J ) ` t ) ) |
| 24 | 23 | iineq2dv | |- ( ( j = J /\ f = F ) -> |^|_ t e. F ( ( cls ` j ) ` t ) = |^|_ t e. F ( ( cls ` J ) ` t ) ) |
| 25 | 20 24 | eqtrd | |- ( ( j = J /\ f = F ) -> |^|_ t e. f ( ( cls ` j ) ` t ) = |^|_ t e. F ( ( cls ` J ) ` t ) ) |
| 26 | 18 25 | ifbieq1d | |- ( ( j = J /\ f = F ) -> if ( U. j = U. f , |^|_ t e. f ( ( cls ` j ) ` t ) , (/) ) = if ( X = U. F , |^|_ t e. F ( ( cls ` J ) ` t ) , (/) ) ) |
| 27 | df-fcls | |- fClus = ( j e. Top , f e. U. ran Fil |-> if ( U. j = U. f , |^|_ t e. f ( ( cls ` j ) ` t ) , (/) ) ) |
|
| 28 | 26 27 | ovmpoga | |- ( ( J e. Top /\ F e. U. ran Fil /\ if ( X = U. F , |^|_ t e. F ( ( cls ` J ) ` t ) , (/) ) e. _V ) -> ( J fClus F ) = if ( X = U. F , |^|_ t e. F ( ( cls ` J ) ` t ) , (/) ) ) |
| 29 | 2 5 14 28 | syl3anc | |- ( ( J e. Top /\ F e. ( Fil ` Y ) ) -> ( J fClus F ) = if ( X = U. F , |^|_ t e. F ( ( cls ` J ) ` t ) , (/) ) ) |
| 30 | filunibas | |- ( F e. ( Fil ` Y ) -> U. F = Y ) |
|
| 31 | 30 | eqeq2d | |- ( F e. ( Fil ` Y ) -> ( X = U. F <-> X = Y ) ) |
| 32 | 31 | adantl | |- ( ( J e. Top /\ F e. ( Fil ` Y ) ) -> ( X = U. F <-> X = Y ) ) |
| 33 | 32 | ifbid | |- ( ( J e. Top /\ F e. ( Fil ` Y ) ) -> if ( X = U. F , |^|_ t e. F ( ( cls ` J ) ` t ) , (/) ) = if ( X = Y , |^|_ t e. F ( ( cls ` J ) ` t ) , (/) ) ) |
| 34 | 29 33 | eqtrd | |- ( ( J e. Top /\ F e. ( Fil ` Y ) ) -> ( J fClus F ) = if ( X = Y , |^|_ t e. F ( ( cls ` J ) ` t ) , (/) ) ) |