This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The existence of a class intersection. x is normally a free-variable parameter in B , which should be read B ( x ) . (Contributed by FL, 19-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iinexg | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiin2g | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ) → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |
| 3 | elisset | ⊢ ( 𝐵 ∈ 𝐶 → ∃ 𝑦 𝑦 = 𝐵 ) | |
| 4 | 3 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∈ 𝐶 → ∃ 𝑦 𝑦 = 𝐵 ) |
| 5 | r19.2z | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∈ 𝐶 → ∃ 𝑦 𝑦 = 𝐵 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝐵 ∈ 𝐶 → ∃ 𝑦 𝑦 = 𝐵 ) ) | |
| 6 | 4 5 | mpan2 | ⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ 𝐴 ( 𝐵 ∈ 𝐶 → ∃ 𝑦 𝑦 = 𝐵 ) ) |
| 7 | r19.35 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝐵 ∈ 𝐶 → ∃ 𝑦 𝑦 = 𝐵 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 = 𝐵 ) ) | |
| 8 | 6 7 | sylib | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 = 𝐵 ) ) |
| 9 | 8 | imp | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 = 𝐵 ) |
| 10 | rexcom4 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 = 𝐵 ↔ ∃ 𝑦 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ) | |
| 11 | 9 10 | sylib | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ) → ∃ 𝑦 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ) |
| 12 | abn0 | ⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ≠ ∅ ↔ ∃ 𝑦 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ) | |
| 13 | 11 12 | sylibr | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ≠ ∅ ) |
| 14 | intex | ⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ≠ ∅ ↔ ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ V ) | |
| 15 | 13 14 | sylib | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ) → ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ V ) |
| 16 | 2 15 | eqeltrd | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |