This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Forward direction of fclscmp . Every filter clusters in a compact space. (Contributed by Mario Carneiro, 11-Apr-2015) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | flimfnfcls.x | |- X = U. J |
|
| Assertion | fclscmpi | |- ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> ( J fClus F ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flimfnfcls.x | |- X = U. J |
|
| 2 | cmptop | |- ( J e. Comp -> J e. Top ) |
|
| 3 | 1 | fclsval | |- ( ( J e. Top /\ F e. ( Fil ` X ) ) -> ( J fClus F ) = if ( X = X , |^|_ x e. F ( ( cls ` J ) ` x ) , (/) ) ) |
| 4 | eqid | |- X = X |
|
| 5 | 4 | iftruei | |- if ( X = X , |^|_ x e. F ( ( cls ` J ) ` x ) , (/) ) = |^|_ x e. F ( ( cls ` J ) ` x ) |
| 6 | 3 5 | eqtrdi | |- ( ( J e. Top /\ F e. ( Fil ` X ) ) -> ( J fClus F ) = |^|_ x e. F ( ( cls ` J ) ` x ) ) |
| 7 | 2 6 | sylan | |- ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> ( J fClus F ) = |^|_ x e. F ( ( cls ` J ) ` x ) ) |
| 8 | fvex | |- ( ( cls ` J ) ` x ) e. _V |
|
| 9 | 8 | dfiin3 | |- |^|_ x e. F ( ( cls ` J ) ` x ) = |^| ran ( x e. F |-> ( ( cls ` J ) ` x ) ) |
| 10 | 7 9 | eqtrdi | |- ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> ( J fClus F ) = |^| ran ( x e. F |-> ( ( cls ` J ) ` x ) ) ) |
| 11 | simpl | |- ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> J e. Comp ) |
|
| 12 | 11 | adantr | |- ( ( ( J e. Comp /\ F e. ( Fil ` X ) ) /\ x e. F ) -> J e. Comp ) |
| 13 | 12 2 | syl | |- ( ( ( J e. Comp /\ F e. ( Fil ` X ) ) /\ x e. F ) -> J e. Top ) |
| 14 | filelss | |- ( ( F e. ( Fil ` X ) /\ x e. F ) -> x C_ X ) |
|
| 15 | 14 | adantll | |- ( ( ( J e. Comp /\ F e. ( Fil ` X ) ) /\ x e. F ) -> x C_ X ) |
| 16 | 1 | clscld | |- ( ( J e. Top /\ x C_ X ) -> ( ( cls ` J ) ` x ) e. ( Clsd ` J ) ) |
| 17 | 13 15 16 | syl2anc | |- ( ( ( J e. Comp /\ F e. ( Fil ` X ) ) /\ x e. F ) -> ( ( cls ` J ) ` x ) e. ( Clsd ` J ) ) |
| 18 | 17 | fmpttd | |- ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> ( x e. F |-> ( ( cls ` J ) ` x ) ) : F --> ( Clsd ` J ) ) |
| 19 | 18 | frnd | |- ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> ran ( x e. F |-> ( ( cls ` J ) ` x ) ) C_ ( Clsd ` J ) ) |
| 20 | simpr | |- ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> F e. ( Fil ` X ) ) |
|
| 21 | 20 | adantr | |- ( ( ( J e. Comp /\ F e. ( Fil ` X ) ) /\ x e. F ) -> F e. ( Fil ` X ) ) |
| 22 | simpr | |- ( ( ( J e. Comp /\ F e. ( Fil ` X ) ) /\ x e. F ) -> x e. F ) |
|
| 23 | 1 | clsss3 | |- ( ( J e. Top /\ x C_ X ) -> ( ( cls ` J ) ` x ) C_ X ) |
| 24 | 13 15 23 | syl2anc | |- ( ( ( J e. Comp /\ F e. ( Fil ` X ) ) /\ x e. F ) -> ( ( cls ` J ) ` x ) C_ X ) |
| 25 | 1 | sscls | |- ( ( J e. Top /\ x C_ X ) -> x C_ ( ( cls ` J ) ` x ) ) |
| 26 | 13 15 25 | syl2anc | |- ( ( ( J e. Comp /\ F e. ( Fil ` X ) ) /\ x e. F ) -> x C_ ( ( cls ` J ) ` x ) ) |
| 27 | filss | |- ( ( F e. ( Fil ` X ) /\ ( x e. F /\ ( ( cls ` J ) ` x ) C_ X /\ x C_ ( ( cls ` J ) ` x ) ) ) -> ( ( cls ` J ) ` x ) e. F ) |
|
| 28 | 21 22 24 26 27 | syl13anc | |- ( ( ( J e. Comp /\ F e. ( Fil ` X ) ) /\ x e. F ) -> ( ( cls ` J ) ` x ) e. F ) |
| 29 | 28 | fmpttd | |- ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> ( x e. F |-> ( ( cls ` J ) ` x ) ) : F --> F ) |
| 30 | 29 | frnd | |- ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> ran ( x e. F |-> ( ( cls ` J ) ` x ) ) C_ F ) |
| 31 | fiss | |- ( ( F e. ( Fil ` X ) /\ ran ( x e. F |-> ( ( cls ` J ) ` x ) ) C_ F ) -> ( fi ` ran ( x e. F |-> ( ( cls ` J ) ` x ) ) ) C_ ( fi ` F ) ) |
|
| 32 | 20 30 31 | syl2anc | |- ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> ( fi ` ran ( x e. F |-> ( ( cls ` J ) ` x ) ) ) C_ ( fi ` F ) ) |
| 33 | filfi | |- ( F e. ( Fil ` X ) -> ( fi ` F ) = F ) |
|
| 34 | 20 33 | syl | |- ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> ( fi ` F ) = F ) |
| 35 | 32 34 | sseqtrd | |- ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> ( fi ` ran ( x e. F |-> ( ( cls ` J ) ` x ) ) ) C_ F ) |
| 36 | 0nelfil | |- ( F e. ( Fil ` X ) -> -. (/) e. F ) |
|
| 37 | 20 36 | syl | |- ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> -. (/) e. F ) |
| 38 | 35 37 | ssneldd | |- ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> -. (/) e. ( fi ` ran ( x e. F |-> ( ( cls ` J ) ` x ) ) ) ) |
| 39 | cmpfii | |- ( ( J e. Comp /\ ran ( x e. F |-> ( ( cls ` J ) ` x ) ) C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` ran ( x e. F |-> ( ( cls ` J ) ` x ) ) ) ) -> |^| ran ( x e. F |-> ( ( cls ` J ) ` x ) ) =/= (/) ) |
|
| 40 | 11 19 38 39 | syl3anc | |- ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> |^| ran ( x e. F |-> ( ( cls ` J ) ` x ) ) =/= (/) ) |
| 41 | 10 40 | eqnetrd | |- ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> ( J fClus F ) =/= (/) ) |