This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cluster point of a function is in the base set of the topology. (Contributed by Jeff Hankins, 26-Nov-2009) (Revised by Stefan O'Rear, 9-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fcfelbas | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ) → 𝐴 ∈ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcfval | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) = ( 𝐽 fClus ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) | |
| 2 | 1 | eleq2d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ↔ 𝐴 ∈ ( 𝐽 fClus ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) ) |
| 3 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | fclselbas | ⊢ ( 𝐴 ∈ ( 𝐽 fClus ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) → 𝐴 ∈ ∪ 𝐽 ) |
| 5 | 2 4 | biimtrdi | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) → 𝐴 ∈ ∪ 𝐽 ) ) |
| 6 | 5 | imp | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ) → 𝐴 ∈ ∪ 𝐽 ) |
| 7 | simpl1 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 8 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 9 | 7 8 | syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ) → 𝑋 = ∪ 𝐽 ) |
| 10 | 6 9 | eleqtrrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ) → 𝐴 ∈ 𝑋 ) |