This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A neighborhood of a cluster point of a function contains a function value from every tail. (Contributed by Jeff Hankins, 27-Nov-2009) (Revised by Stefan O'Rear, 9-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fcfneii | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑆 ∈ 𝐿 ) ) → ( 𝑁 ∩ ( 𝐹 “ 𝑆 ) ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcfnei | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) ) | |
| 2 | ineq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) = ( 𝑁 ∩ ( 𝐹 “ 𝑠 ) ) ) | |
| 3 | 2 | neeq1d | ⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ↔ ( 𝑁 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
| 4 | imaeq2 | ⊢ ( 𝑠 = 𝑆 → ( 𝐹 “ 𝑠 ) = ( 𝐹 “ 𝑆 ) ) | |
| 5 | 4 | ineq2d | ⊢ ( 𝑠 = 𝑆 → ( 𝑁 ∩ ( 𝐹 “ 𝑠 ) ) = ( 𝑁 ∩ ( 𝐹 “ 𝑆 ) ) ) |
| 6 | 5 | neeq1d | ⊢ ( 𝑠 = 𝑆 → ( ( 𝑁 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ↔ ( 𝑁 ∩ ( 𝐹 “ 𝑆 ) ) ≠ ∅ ) ) |
| 7 | 3 6 | rspc2v | ⊢ ( ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑆 ∈ 𝐿 ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ → ( 𝑁 ∩ ( 𝐹 “ 𝑆 ) ) ≠ ∅ ) ) |
| 8 | 7 | ex | ⊢ ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( 𝑆 ∈ 𝐿 → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ → ( 𝑁 ∩ ( 𝐹 “ 𝑆 ) ) ≠ ∅ ) ) ) |
| 9 | 8 | com3r | ⊢ ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( 𝑆 ∈ 𝐿 → ( 𝑁 ∩ ( 𝐹 “ 𝑆 ) ) ≠ ∅ ) ) ) |
| 10 | 9 | adantl | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( 𝑆 ∈ 𝐿 → ( 𝑁 ∩ ( 𝐹 “ 𝑆 ) ) ≠ ∅ ) ) ) |
| 11 | 1 10 | biimtrdi | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( 𝑆 ∈ 𝐿 → ( 𝑁 ∩ ( 𝐹 “ 𝑆 ) ) ≠ ∅ ) ) ) ) |
| 12 | 11 | 3imp2 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑆 ∈ 𝐿 ) ) → ( 𝑁 ∩ ( 𝐹 “ 𝑆 ) ) ≠ ∅ ) |