This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cluster point of a function is in the base set of the topology. (Contributed by Jeff Hankins, 26-Nov-2009) (Revised by Stefan O'Rear, 9-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fcfelbas | |- ( ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) /\ A e. ( ( J fClusf L ) ` F ) ) -> A e. X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcfval | |- ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> ( ( J fClusf L ) ` F ) = ( J fClus ( ( X FilMap F ) ` L ) ) ) |
|
| 2 | 1 | eleq2d | |- ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> ( A e. ( ( J fClusf L ) ` F ) <-> A e. ( J fClus ( ( X FilMap F ) ` L ) ) ) ) |
| 3 | eqid | |- U. J = U. J |
|
| 4 | 3 | fclselbas | |- ( A e. ( J fClus ( ( X FilMap F ) ` L ) ) -> A e. U. J ) |
| 5 | 2 4 | biimtrdi | |- ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> ( A e. ( ( J fClusf L ) ` F ) -> A e. U. J ) ) |
| 6 | 5 | imp | |- ( ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) /\ A e. ( ( J fClusf L ) ` F ) ) -> A e. U. J ) |
| 7 | simpl1 | |- ( ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) /\ A e. ( ( J fClusf L ) ` F ) ) -> J e. ( TopOn ` X ) ) |
|
| 8 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 9 | 7 8 | syl | |- ( ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) /\ A e. ( ( J fClusf L ) ` F ) ) -> X = U. J ) |
| 10 | 6 9 | eleqtrrd | |- ( ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) /\ A e. ( ( J fClusf L ) ` F ) ) -> A e. X ) |