This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter base contains subsets of its finite intersections. (Contributed by Jeff Hankins, 1-Sep-2009) (Revised by Stefan O'Rear, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fbssint | |- ( ( F e. ( fBas ` B ) /\ A C_ F /\ A e. Fin ) -> E. x e. F x C_ |^| A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fbasne0 | |- ( F e. ( fBas ` B ) -> F =/= (/) ) |
|
| 2 | n0 | |- ( F =/= (/) <-> E. x x e. F ) |
|
| 3 | 1 2 | sylib | |- ( F e. ( fBas ` B ) -> E. x x e. F ) |
| 4 | ssv | |- x C_ _V |
|
| 5 | 4 | jctr | |- ( x e. F -> ( x e. F /\ x C_ _V ) ) |
| 6 | 5 | eximi | |- ( E. x x e. F -> E. x ( x e. F /\ x C_ _V ) ) |
| 7 | df-rex | |- ( E. x e. F x C_ _V <-> E. x ( x e. F /\ x C_ _V ) ) |
|
| 8 | 6 7 | sylibr | |- ( E. x x e. F -> E. x e. F x C_ _V ) |
| 9 | 3 8 | syl | |- ( F e. ( fBas ` B ) -> E. x e. F x C_ _V ) |
| 10 | inteq | |- ( A = (/) -> |^| A = |^| (/) ) |
|
| 11 | int0 | |- |^| (/) = _V |
|
| 12 | 10 11 | eqtrdi | |- ( A = (/) -> |^| A = _V ) |
| 13 | 12 | sseq2d | |- ( A = (/) -> ( x C_ |^| A <-> x C_ _V ) ) |
| 14 | 13 | rexbidv | |- ( A = (/) -> ( E. x e. F x C_ |^| A <-> E. x e. F x C_ _V ) ) |
| 15 | 9 14 | syl5ibrcom | |- ( F e. ( fBas ` B ) -> ( A = (/) -> E. x e. F x C_ |^| A ) ) |
| 16 | 15 | 3ad2ant1 | |- ( ( F e. ( fBas ` B ) /\ A C_ F /\ A e. Fin ) -> ( A = (/) -> E. x e. F x C_ |^| A ) ) |
| 17 | simpl1 | |- ( ( ( F e. ( fBas ` B ) /\ A C_ F /\ A e. Fin ) /\ A =/= (/) ) -> F e. ( fBas ` B ) ) |
|
| 18 | simpl2 | |- ( ( ( F e. ( fBas ` B ) /\ A C_ F /\ A e. Fin ) /\ A =/= (/) ) -> A C_ F ) |
|
| 19 | simpr | |- ( ( ( F e. ( fBas ` B ) /\ A C_ F /\ A e. Fin ) /\ A =/= (/) ) -> A =/= (/) ) |
|
| 20 | simpl3 | |- ( ( ( F e. ( fBas ` B ) /\ A C_ F /\ A e. Fin ) /\ A =/= (/) ) -> A e. Fin ) |
|
| 21 | elfir | |- ( ( F e. ( fBas ` B ) /\ ( A C_ F /\ A =/= (/) /\ A e. Fin ) ) -> |^| A e. ( fi ` F ) ) |
|
| 22 | 17 18 19 20 21 | syl13anc | |- ( ( ( F e. ( fBas ` B ) /\ A C_ F /\ A e. Fin ) /\ A =/= (/) ) -> |^| A e. ( fi ` F ) ) |
| 23 | fbssfi | |- ( ( F e. ( fBas ` B ) /\ |^| A e. ( fi ` F ) ) -> E. x e. F x C_ |^| A ) |
|
| 24 | 17 22 23 | syl2anc | |- ( ( ( F e. ( fBas ` B ) /\ A C_ F /\ A e. Fin ) /\ A =/= (/) ) -> E. x e. F x C_ |^| A ) |
| 25 | 24 | ex | |- ( ( F e. ( fBas ` B ) /\ A C_ F /\ A e. Fin ) -> ( A =/= (/) -> E. x e. F x C_ |^| A ) ) |
| 26 | 16 25 | pm2.61dne | |- ( ( F e. ( fBas ` B ) /\ A C_ F /\ A e. Fin ) -> E. x e. F x C_ |^| A ) |