This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | facndiv | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ¬ ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 2 | recnz | ⊢ ( ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) → ¬ ( 1 / 𝑁 ) ∈ ℤ ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) → ¬ ( 1 / 𝑁 ) ∈ ℤ ) |
| 4 | 3 | ad2ant2lr | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ¬ ( 1 / 𝑁 ) ∈ ℤ ) |
| 5 | facdiv | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀 ) → ( ( ! ‘ 𝑀 ) / 𝑁 ) ∈ ℕ ) | |
| 6 | 5 | 3expa | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ 𝑁 ≤ 𝑀 ) → ( ( ! ‘ 𝑀 ) / 𝑁 ) ∈ ℕ ) |
| 7 | 6 | nnzd | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ 𝑁 ≤ 𝑀 ) → ( ( ! ‘ 𝑀 ) / 𝑁 ) ∈ ℤ ) |
| 8 | 7 | adantrl | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ( ( ! ‘ 𝑀 ) / 𝑁 ) ∈ ℤ ) |
| 9 | zsubcl | ⊢ ( ( ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) ∈ ℤ ∧ ( ( ! ‘ 𝑀 ) / 𝑁 ) ∈ ℤ ) → ( ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) − ( ( ! ‘ 𝑀 ) / 𝑁 ) ) ∈ ℤ ) | |
| 10 | 9 | ex | ⊢ ( ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) ∈ ℤ → ( ( ( ! ‘ 𝑀 ) / 𝑁 ) ∈ ℤ → ( ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) − ( ( ! ‘ 𝑀 ) / 𝑁 ) ) ∈ ℤ ) ) |
| 11 | 8 10 | syl5com | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ( ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) ∈ ℤ → ( ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) − ( ( ! ‘ 𝑀 ) / 𝑁 ) ) ∈ ℤ ) ) |
| 12 | faccl | ⊢ ( 𝑀 ∈ ℕ0 → ( ! ‘ 𝑀 ) ∈ ℕ ) | |
| 13 | 12 | nncnd | ⊢ ( 𝑀 ∈ ℕ0 → ( ! ‘ 𝑀 ) ∈ ℂ ) |
| 14 | peano2cn | ⊢ ( ( ! ‘ 𝑀 ) ∈ ℂ → ( ( ! ‘ 𝑀 ) + 1 ) ∈ ℂ ) | |
| 15 | 13 14 | syl | ⊢ ( 𝑀 ∈ ℕ0 → ( ( ! ‘ 𝑀 ) + 1 ) ∈ ℂ ) |
| 16 | 15 | ad2antrr | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ( ( ! ‘ 𝑀 ) + 1 ) ∈ ℂ ) |
| 17 | 13 | ad2antrr | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ( ! ‘ 𝑀 ) ∈ ℂ ) |
| 18 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 19 | nnne0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) | |
| 20 | 18 19 | jca | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) |
| 21 | 20 | ad2antlr | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) |
| 22 | divsubdir | ⊢ ( ( ( ( ! ‘ 𝑀 ) + 1 ) ∈ ℂ ∧ ( ! ‘ 𝑀 ) ∈ ℂ ∧ ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) → ( ( ( ( ! ‘ 𝑀 ) + 1 ) − ( ! ‘ 𝑀 ) ) / 𝑁 ) = ( ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) − ( ( ! ‘ 𝑀 ) / 𝑁 ) ) ) | |
| 23 | 16 17 21 22 | syl3anc | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ( ( ( ( ! ‘ 𝑀 ) + 1 ) − ( ! ‘ 𝑀 ) ) / 𝑁 ) = ( ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) − ( ( ! ‘ 𝑀 ) / 𝑁 ) ) ) |
| 24 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 25 | pncan2 | ⊢ ( ( ( ! ‘ 𝑀 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ! ‘ 𝑀 ) + 1 ) − ( ! ‘ 𝑀 ) ) = 1 ) | |
| 26 | 13 24 25 | sylancl | ⊢ ( 𝑀 ∈ ℕ0 → ( ( ( ! ‘ 𝑀 ) + 1 ) − ( ! ‘ 𝑀 ) ) = 1 ) |
| 27 | 26 | oveq1d | ⊢ ( 𝑀 ∈ ℕ0 → ( ( ( ( ! ‘ 𝑀 ) + 1 ) − ( ! ‘ 𝑀 ) ) / 𝑁 ) = ( 1 / 𝑁 ) ) |
| 28 | 27 | ad2antrr | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ( ( ( ( ! ‘ 𝑀 ) + 1 ) − ( ! ‘ 𝑀 ) ) / 𝑁 ) = ( 1 / 𝑁 ) ) |
| 29 | 23 28 | eqtr3d | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ( ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) − ( ( ! ‘ 𝑀 ) / 𝑁 ) ) = ( 1 / 𝑁 ) ) |
| 30 | 29 | eleq1d | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ( ( ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) − ( ( ! ‘ 𝑀 ) / 𝑁 ) ) ∈ ℤ ↔ ( 1 / 𝑁 ) ∈ ℤ ) ) |
| 31 | 11 30 | sylibd | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ( ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) ∈ ℤ → ( 1 / 𝑁 ) ∈ ℤ ) ) |
| 32 | 4 31 | mtod | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ¬ ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) ∈ ℤ ) |