This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | facndiv | |- ( ( ( M e. NN0 /\ N e. NN ) /\ ( 1 < N /\ N <_ M ) ) -> -. ( ( ( ! ` M ) + 1 ) / N ) e. ZZ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 2 | recnz | |- ( ( N e. RR /\ 1 < N ) -> -. ( 1 / N ) e. ZZ ) |
|
| 3 | 1 2 | sylan | |- ( ( N e. NN /\ 1 < N ) -> -. ( 1 / N ) e. ZZ ) |
| 4 | 3 | ad2ant2lr | |- ( ( ( M e. NN0 /\ N e. NN ) /\ ( 1 < N /\ N <_ M ) ) -> -. ( 1 / N ) e. ZZ ) |
| 5 | facdiv | |- ( ( M e. NN0 /\ N e. NN /\ N <_ M ) -> ( ( ! ` M ) / N ) e. NN ) |
|
| 6 | 5 | 3expa | |- ( ( ( M e. NN0 /\ N e. NN ) /\ N <_ M ) -> ( ( ! ` M ) / N ) e. NN ) |
| 7 | 6 | nnzd | |- ( ( ( M e. NN0 /\ N e. NN ) /\ N <_ M ) -> ( ( ! ` M ) / N ) e. ZZ ) |
| 8 | 7 | adantrl | |- ( ( ( M e. NN0 /\ N e. NN ) /\ ( 1 < N /\ N <_ M ) ) -> ( ( ! ` M ) / N ) e. ZZ ) |
| 9 | zsubcl | |- ( ( ( ( ( ! ` M ) + 1 ) / N ) e. ZZ /\ ( ( ! ` M ) / N ) e. ZZ ) -> ( ( ( ( ! ` M ) + 1 ) / N ) - ( ( ! ` M ) / N ) ) e. ZZ ) |
|
| 10 | 9 | ex | |- ( ( ( ( ! ` M ) + 1 ) / N ) e. ZZ -> ( ( ( ! ` M ) / N ) e. ZZ -> ( ( ( ( ! ` M ) + 1 ) / N ) - ( ( ! ` M ) / N ) ) e. ZZ ) ) |
| 11 | 8 10 | syl5com | |- ( ( ( M e. NN0 /\ N e. NN ) /\ ( 1 < N /\ N <_ M ) ) -> ( ( ( ( ! ` M ) + 1 ) / N ) e. ZZ -> ( ( ( ( ! ` M ) + 1 ) / N ) - ( ( ! ` M ) / N ) ) e. ZZ ) ) |
| 12 | faccl | |- ( M e. NN0 -> ( ! ` M ) e. NN ) |
|
| 13 | 12 | nncnd | |- ( M e. NN0 -> ( ! ` M ) e. CC ) |
| 14 | peano2cn | |- ( ( ! ` M ) e. CC -> ( ( ! ` M ) + 1 ) e. CC ) |
|
| 15 | 13 14 | syl | |- ( M e. NN0 -> ( ( ! ` M ) + 1 ) e. CC ) |
| 16 | 15 | ad2antrr | |- ( ( ( M e. NN0 /\ N e. NN ) /\ ( 1 < N /\ N <_ M ) ) -> ( ( ! ` M ) + 1 ) e. CC ) |
| 17 | 13 | ad2antrr | |- ( ( ( M e. NN0 /\ N e. NN ) /\ ( 1 < N /\ N <_ M ) ) -> ( ! ` M ) e. CC ) |
| 18 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 19 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 20 | 18 19 | jca | |- ( N e. NN -> ( N e. CC /\ N =/= 0 ) ) |
| 21 | 20 | ad2antlr | |- ( ( ( M e. NN0 /\ N e. NN ) /\ ( 1 < N /\ N <_ M ) ) -> ( N e. CC /\ N =/= 0 ) ) |
| 22 | divsubdir | |- ( ( ( ( ! ` M ) + 1 ) e. CC /\ ( ! ` M ) e. CC /\ ( N e. CC /\ N =/= 0 ) ) -> ( ( ( ( ! ` M ) + 1 ) - ( ! ` M ) ) / N ) = ( ( ( ( ! ` M ) + 1 ) / N ) - ( ( ! ` M ) / N ) ) ) |
|
| 23 | 16 17 21 22 | syl3anc | |- ( ( ( M e. NN0 /\ N e. NN ) /\ ( 1 < N /\ N <_ M ) ) -> ( ( ( ( ! ` M ) + 1 ) - ( ! ` M ) ) / N ) = ( ( ( ( ! ` M ) + 1 ) / N ) - ( ( ! ` M ) / N ) ) ) |
| 24 | ax-1cn | |- 1 e. CC |
|
| 25 | pncan2 | |- ( ( ( ! ` M ) e. CC /\ 1 e. CC ) -> ( ( ( ! ` M ) + 1 ) - ( ! ` M ) ) = 1 ) |
|
| 26 | 13 24 25 | sylancl | |- ( M e. NN0 -> ( ( ( ! ` M ) + 1 ) - ( ! ` M ) ) = 1 ) |
| 27 | 26 | oveq1d | |- ( M e. NN0 -> ( ( ( ( ! ` M ) + 1 ) - ( ! ` M ) ) / N ) = ( 1 / N ) ) |
| 28 | 27 | ad2antrr | |- ( ( ( M e. NN0 /\ N e. NN ) /\ ( 1 < N /\ N <_ M ) ) -> ( ( ( ( ! ` M ) + 1 ) - ( ! ` M ) ) / N ) = ( 1 / N ) ) |
| 29 | 23 28 | eqtr3d | |- ( ( ( M e. NN0 /\ N e. NN ) /\ ( 1 < N /\ N <_ M ) ) -> ( ( ( ( ! ` M ) + 1 ) / N ) - ( ( ! ` M ) / N ) ) = ( 1 / N ) ) |
| 30 | 29 | eleq1d | |- ( ( ( M e. NN0 /\ N e. NN ) /\ ( 1 < N /\ N <_ M ) ) -> ( ( ( ( ( ! ` M ) + 1 ) / N ) - ( ( ! ` M ) / N ) ) e. ZZ <-> ( 1 / N ) e. ZZ ) ) |
| 31 | 11 30 | sylibd | |- ( ( ( M e. NN0 /\ N e. NN ) /\ ( 1 < N /\ N <_ M ) ) -> ( ( ( ( ! ` M ) + 1 ) / N ) e. ZZ -> ( 1 / N ) e. ZZ ) ) |
| 32 | 4 31 | mtod | |- ( ( ( M e. NN0 /\ N e. NN ) /\ ( 1 < N /\ N <_ M ) ) -> -. ( ( ( ! ` M ) + 1 ) / N ) e. ZZ ) |