This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extension of a bijection by an ordered pair. (Contributed by AV, 15-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f1ounsn.f | ⊢ 𝐹 = ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) | |
| Assertion | f1ounsn | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → 𝐹 : ( 𝐴 ∪ { 𝑋 } ) –1-1-onto→ ( 𝐵 ∪ { 𝑌 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ounsn.f | ⊢ 𝐹 = ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) | |
| 2 | f1of | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → 𝐺 : 𝐴 ⟶ 𝐵 ) | |
| 3 | ssun1 | ⊢ 𝐵 ⊆ ( 𝐵 ∪ { 𝑌 } ) | |
| 4 | 3 | a1i | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → 𝐵 ⊆ ( 𝐵 ∪ { 𝑌 } ) ) |
| 5 | 2 4 | fssd | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → 𝐺 : 𝐴 ⟶ ( 𝐵 ∪ { 𝑌 } ) ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → 𝐺 : 𝐴 ⟶ ( 𝐵 ∪ { 𝑌 } ) ) |
| 7 | simpl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → 𝑋 ∈ 𝑉 ) | |
| 8 | df-nel | ⊢ ( 𝑋 ∉ 𝐴 ↔ ¬ 𝑋 ∈ 𝐴 ) | |
| 9 | 8 | biimpi | ⊢ ( 𝑋 ∉ 𝐴 → ¬ 𝑋 ∈ 𝐴 ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) → ¬ 𝑋 ∈ 𝐴 ) |
| 11 | 7 10 | anim12i | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ( 𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝐴 ) ) |
| 12 | 11 | 3adant1 | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ( 𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝐴 ) ) |
| 13 | eqid | ⊢ 𝑌 = 𝑌 | |
| 14 | 13 | olci | ⊢ ( 𝑌 ∈ 𝐵 ∨ 𝑌 = 𝑌 ) |
| 15 | elunsn | ⊢ ( 𝑌 ∈ 𝑊 → ( 𝑌 ∈ ( 𝐵 ∪ { 𝑌 } ) ↔ ( 𝑌 ∈ 𝐵 ∨ 𝑌 = 𝑌 ) ) ) | |
| 16 | 14 15 | mpbiri | ⊢ ( 𝑌 ∈ 𝑊 → 𝑌 ∈ ( 𝐵 ∪ { 𝑌 } ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → 𝑌 ∈ ( 𝐵 ∪ { 𝑌 } ) ) |
| 18 | 17 | 3ad2ant2 | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → 𝑌 ∈ ( 𝐵 ∪ { 𝑌 } ) ) |
| 19 | 6 12 18 | 3jca | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ( 𝐺 : 𝐴 ⟶ ( 𝐵 ∪ { 𝑌 } ) ∧ ( 𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝐴 ) ∧ 𝑌 ∈ ( 𝐵 ∪ { 𝑌 } ) ) ) |
| 20 | fsnunf | ⊢ ( ( 𝐺 : 𝐴 ⟶ ( 𝐵 ∪ { 𝑌 } ) ∧ ( 𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝐴 ) ∧ 𝑌 ∈ ( 𝐵 ∪ { 𝑌 } ) ) → ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) : ( 𝐴 ∪ { 𝑋 } ) ⟶ ( 𝐵 ∪ { 𝑌 } ) ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) : ( 𝐴 ∪ { 𝑋 } ) ⟶ ( 𝐵 ∪ { 𝑌 } ) ) |
| 22 | f1of1 | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → 𝐺 : 𝐴 –1-1→ 𝐵 ) | |
| 23 | dff14a | ⊢ ( 𝐺 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ≠ 𝑏 → ( 𝐺 ‘ 𝑎 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ) ) | |
| 24 | neeq1 | ⊢ ( 𝑎 = 𝑥 → ( 𝑎 ≠ 𝑏 ↔ 𝑥 ≠ 𝑏 ) ) | |
| 25 | fveq2 | ⊢ ( 𝑎 = 𝑥 → ( 𝐺 ‘ 𝑎 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 26 | 25 | neeq1d | ⊢ ( 𝑎 = 𝑥 → ( ( 𝐺 ‘ 𝑎 ) ≠ ( 𝐺 ‘ 𝑏 ) ↔ ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ) |
| 27 | 24 26 | imbi12d | ⊢ ( 𝑎 = 𝑥 → ( ( 𝑎 ≠ 𝑏 → ( 𝐺 ‘ 𝑎 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ↔ ( 𝑥 ≠ 𝑏 → ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ) ) |
| 28 | neeq2 | ⊢ ( 𝑏 = 𝑦 → ( 𝑥 ≠ 𝑏 ↔ 𝑥 ≠ 𝑦 ) ) | |
| 29 | fveq2 | ⊢ ( 𝑏 = 𝑦 → ( 𝐺 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 30 | 29 | neeq2d | ⊢ ( 𝑏 = 𝑦 → ( ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑏 ) ↔ ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑦 ) ) ) |
| 31 | 28 30 | imbi12d | ⊢ ( 𝑏 = 𝑦 → ( ( 𝑥 ≠ 𝑏 → ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ↔ ( 𝑥 ≠ 𝑦 → ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 32 | 27 31 | rspc2va | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ≠ 𝑏 → ( 𝐺 ‘ 𝑎 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ) → ( 𝑥 ≠ 𝑦 → ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑦 ) ) ) |
| 33 | 32 | expcom | ⊢ ( ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ≠ 𝑏 → ( 𝐺 ‘ 𝑎 ) ≠ ( 𝐺 ‘ 𝑏 ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ≠ 𝑦 → ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 34 | 33 | adantl | ⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ≠ 𝑏 → ( 𝐺 ‘ 𝑎 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ≠ 𝑦 → ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 35 | 23 34 | sylbi | ⊢ ( 𝐺 : 𝐴 –1-1→ 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ≠ 𝑦 → ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 36 | 22 35 | syl | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ≠ 𝑦 → ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 37 | 36 | 3ad2ant1 | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ≠ 𝑦 → ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 38 | 37 | impl | ⊢ ( ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ≠ 𝑦 → ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑦 ) ) ) |
| 39 | 38 | imp | ⊢ ( ( ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑦 ) ) |
| 40 | nelne2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝐴 ) → 𝑥 ≠ 𝑋 ) | |
| 41 | 40 | necomd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝐴 ) → 𝑋 ≠ 𝑥 ) |
| 42 | 41 | expcom | ⊢ ( ¬ 𝑋 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑋 ≠ 𝑥 ) ) |
| 43 | 8 42 | sylbi | ⊢ ( 𝑋 ∉ 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑋 ≠ 𝑥 ) ) |
| 44 | 43 | adantr | ⊢ ( ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) → ( 𝑥 ∈ 𝐴 → 𝑋 ≠ 𝑥 ) ) |
| 45 | 44 | 3ad2ant3 | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 → 𝑋 ≠ 𝑥 ) ) |
| 46 | 45 | imp | ⊢ ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑋 ≠ 𝑥 ) |
| 47 | 46 | adantr | ⊢ ( ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑋 ≠ 𝑥 ) |
| 48 | 47 | adantr | ⊢ ( ( ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) → 𝑋 ≠ 𝑥 ) |
| 49 | fvunsn | ⊢ ( 𝑋 ≠ 𝑥 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 50 | 48 49 | syl | ⊢ ( ( ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 51 | nelne2 | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝐴 ) → 𝑦 ≠ 𝑋 ) | |
| 52 | 51 | necomd | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝐴 ) → 𝑋 ≠ 𝑦 ) |
| 53 | 52 | expcom | ⊢ ( ¬ 𝑋 ∈ 𝐴 → ( 𝑦 ∈ 𝐴 → 𝑋 ≠ 𝑦 ) ) |
| 54 | 8 53 | sylbi | ⊢ ( 𝑋 ∉ 𝐴 → ( 𝑦 ∈ 𝐴 → 𝑋 ≠ 𝑦 ) ) |
| 55 | 54 | adantr | ⊢ ( ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) → ( 𝑦 ∈ 𝐴 → 𝑋 ≠ 𝑦 ) ) |
| 56 | 55 | 3ad2ant3 | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ( 𝑦 ∈ 𝐴 → 𝑋 ≠ 𝑦 ) ) |
| 57 | 56 | adantr | ⊢ ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ 𝐴 → 𝑋 ≠ 𝑦 ) ) |
| 58 | 57 | imp | ⊢ ( ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑋 ≠ 𝑦 ) |
| 59 | 58 | adantr | ⊢ ( ( ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) → 𝑋 ≠ 𝑦 ) |
| 60 | fvunsn | ⊢ ( 𝑋 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 61 | 59 60 | syl | ⊢ ( ( ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 62 | 39 50 61 | 3netr4d | ⊢ ( ( ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) |
| 63 | 62 | ex | ⊢ ( ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) |
| 64 | 63 | ralrimiva | ⊢ ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) |
| 65 | 2 | 3ad2ant1 | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → 𝐺 : 𝐴 ⟶ 𝐵 ) |
| 66 | 65 | ffvelcdmda | ⊢ ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐵 ) |
| 67 | df-nel | ⊢ ( 𝑌 ∉ 𝐵 ↔ ¬ 𝑌 ∈ 𝐵 ) | |
| 68 | 67 | biimpi | ⊢ ( 𝑌 ∉ 𝐵 → ¬ 𝑌 ∈ 𝐵 ) |
| 69 | 68 | adantl | ⊢ ( ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) → ¬ 𝑌 ∈ 𝐵 ) |
| 70 | 69 | 3ad2ant3 | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ¬ 𝑌 ∈ 𝐵 ) |
| 71 | 70 | adantr | ⊢ ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑌 ∈ 𝐵 ) |
| 72 | nelne2 | ⊢ ( ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐵 ∧ ¬ 𝑌 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑥 ) ≠ 𝑌 ) | |
| 73 | 66 71 72 | syl2anc | ⊢ ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ≠ 𝑌 ) |
| 74 | 73 | adantr | ⊢ ( ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ≠ 𝑌 ) |
| 75 | simpr | ⊢ ( ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑋 ) → 𝑥 ≠ 𝑋 ) | |
| 76 | 75 | necomd | ⊢ ( ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑋 ) → 𝑋 ≠ 𝑥 ) |
| 77 | 76 49 | syl | ⊢ ( ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑋 ) → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 78 | 7 | 3ad2ant2 | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → 𝑋 ∈ 𝑉 ) |
| 79 | simpr | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → 𝑌 ∈ 𝑊 ) | |
| 80 | 79 | 3ad2ant2 | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → 𝑌 ∈ 𝑊 ) |
| 81 | f1odm | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → dom 𝐺 = 𝐴 ) | |
| 82 | 81 | eqcomd | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → 𝐴 = dom 𝐺 ) |
| 83 | 82 | eleq2d | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑋 ∈ 𝐴 ↔ 𝑋 ∈ dom 𝐺 ) ) |
| 84 | 83 | notbid | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → ( ¬ 𝑋 ∈ 𝐴 ↔ ¬ 𝑋 ∈ dom 𝐺 ) ) |
| 85 | 8 84 | bitrid | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑋 ∉ 𝐴 ↔ ¬ 𝑋 ∈ dom 𝐺 ) ) |
| 86 | 85 | biimpd | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑋 ∉ 𝐴 → ¬ 𝑋 ∈ dom 𝐺 ) ) |
| 87 | 86 | adantrd | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) → ¬ 𝑋 ∈ dom 𝐺 ) ) |
| 88 | 87 | imp | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ¬ 𝑋 ∈ dom 𝐺 ) |
| 89 | 88 | 3adant2 | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ¬ 𝑋 ∈ dom 𝐺 ) |
| 90 | 78 80 89 | 3jca | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ ¬ 𝑋 ∈ dom 𝐺 ) ) |
| 91 | 90 | adantr | ⊢ ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ ¬ 𝑋 ∈ dom 𝐺 ) ) |
| 92 | 91 | adantr | ⊢ ( ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑋 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ ¬ 𝑋 ∈ dom 𝐺 ) ) |
| 93 | fsnunfv | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ ¬ 𝑋 ∈ dom 𝐺 ) → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) = 𝑌 ) | |
| 94 | 92 93 | syl | ⊢ ( ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑋 ) → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) = 𝑌 ) |
| 95 | 74 77 94 | 3netr4d | ⊢ ( ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑋 ) → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ) |
| 96 | 95 | ex | ⊢ ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≠ 𝑋 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ) ) |
| 97 | 78 | adantr | ⊢ ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑋 ∈ 𝑉 ) |
| 98 | neeq2 | ⊢ ( 𝑦 = 𝑋 → ( 𝑥 ≠ 𝑦 ↔ 𝑥 ≠ 𝑋 ) ) | |
| 99 | fveq2 | ⊢ ( 𝑦 = 𝑋 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) = ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ) | |
| 100 | 99 | neeq2d | ⊢ ( 𝑦 = 𝑋 → ( ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ↔ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ) ) |
| 101 | 98 100 | imbi12d | ⊢ ( 𝑦 = 𝑋 → ( ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ↔ ( 𝑥 ≠ 𝑋 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ) ) ) |
| 102 | 101 | ralsng | ⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑦 ∈ { 𝑋 } ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ↔ ( 𝑥 ≠ 𝑋 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ) ) ) |
| 103 | 97 102 | syl | ⊢ ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ { 𝑋 } ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ↔ ( 𝑥 ≠ 𝑋 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ) ) ) |
| 104 | 96 103 | mpbird | ⊢ ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ∈ { 𝑋 } ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) |
| 105 | ralun | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ { 𝑋 } ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) → ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑋 } ) ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) | |
| 106 | 64 104 105 | syl2anc | ⊢ ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑋 } ) ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) |
| 107 | 106 | ralrimiva | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑋 } ) ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) |
| 108 | 65 | ffvelcdmda | ⊢ ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐵 ) |
| 109 | 70 | adantr | ⊢ ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑦 ∈ 𝐴 ) → ¬ 𝑌 ∈ 𝐵 ) |
| 110 | 108 109 | jca | ⊢ ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑦 ) ∈ 𝐵 ∧ ¬ 𝑌 ∈ 𝐵 ) ) |
| 111 | 110 | adantr | ⊢ ( ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑋 ≠ 𝑦 ) → ( ( 𝐺 ‘ 𝑦 ) ∈ 𝐵 ∧ ¬ 𝑌 ∈ 𝐵 ) ) |
| 112 | nelne2 | ⊢ ( ( ( 𝐺 ‘ 𝑦 ) ∈ 𝐵 ∧ ¬ 𝑌 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑦 ) ≠ 𝑌 ) | |
| 113 | 112 | necomd | ⊢ ( ( ( 𝐺 ‘ 𝑦 ) ∈ 𝐵 ∧ ¬ 𝑌 ∈ 𝐵 ) → 𝑌 ≠ ( 𝐺 ‘ 𝑦 ) ) |
| 114 | 111 113 | syl | ⊢ ( ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑋 ≠ 𝑦 ) → 𝑌 ≠ ( 𝐺 ‘ 𝑦 ) ) |
| 115 | 90 | adantr | ⊢ ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ ¬ 𝑋 ∈ dom 𝐺 ) ) |
| 116 | 115 | adantr | ⊢ ( ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑋 ≠ 𝑦 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ ¬ 𝑋 ∈ dom 𝐺 ) ) |
| 117 | 116 93 | syl | ⊢ ( ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑋 ≠ 𝑦 ) → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) = 𝑌 ) |
| 118 | 60 | adantl | ⊢ ( ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑋 ≠ 𝑦 ) → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 119 | 114 117 118 | 3netr4d | ⊢ ( ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑋 ≠ 𝑦 ) → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) |
| 120 | 119 | ex | ⊢ ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑋 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) |
| 121 | 120 | ralrimiva | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑋 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) |
| 122 | eqid | ⊢ 𝑋 = 𝑋 | |
| 123 | eqneqall | ⊢ ( 𝑋 = 𝑋 → ( 𝑋 ≠ 𝑋 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ) ) | |
| 124 | 122 123 | ax-mp | ⊢ ( 𝑋 ≠ 𝑋 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ) |
| 125 | neeq2 | ⊢ ( 𝑦 = 𝑋 → ( 𝑋 ≠ 𝑦 ↔ 𝑋 ≠ 𝑋 ) ) | |
| 126 | 99 | neeq2d | ⊢ ( 𝑦 = 𝑋 → ( ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ↔ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ) ) |
| 127 | 125 126 | imbi12d | ⊢ ( 𝑦 = 𝑋 → ( ( 𝑋 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ↔ ( 𝑋 ≠ 𝑋 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ) ) ) |
| 128 | 127 | ralsng | ⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑦 ∈ { 𝑋 } ( 𝑋 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ↔ ( 𝑋 ≠ 𝑋 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ) ) ) |
| 129 | 78 128 | syl | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ( ∀ 𝑦 ∈ { 𝑋 } ( 𝑋 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ↔ ( 𝑋 ≠ 𝑋 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ) ) ) |
| 130 | 124 129 | mpbiri | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ∀ 𝑦 ∈ { 𝑋 } ( 𝑋 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) |
| 131 | ralun | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 ( 𝑋 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ { 𝑋 } ( 𝑋 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) → ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑋 } ) ( 𝑋 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) | |
| 132 | 121 130 131 | syl2anc | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑋 } ) ( 𝑋 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) |
| 133 | neeq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≠ 𝑦 ↔ 𝑋 ≠ 𝑦 ) ) | |
| 134 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) = ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ) | |
| 135 | 134 | neeq1d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ↔ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) |
| 136 | 133 135 | imbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ↔ ( 𝑋 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) ) |
| 137 | 136 | ralbidv | ⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑋 } ) ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑋 } ) ( 𝑋 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) ) |
| 138 | 137 | ralsng | ⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑥 ∈ { 𝑋 } ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑋 } ) ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑋 } ) ( 𝑋 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) ) |
| 139 | 78 138 | syl | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ( ∀ 𝑥 ∈ { 𝑋 } ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑋 } ) ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑋 } ) ( 𝑋 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) ) |
| 140 | 132 139 | mpbird | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ∀ 𝑥 ∈ { 𝑋 } ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑋 } ) ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) |
| 141 | ralun | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑋 } ) ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ∧ ∀ 𝑥 ∈ { 𝑋 } ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑋 } ) ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝑋 } ) ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑋 } ) ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) | |
| 142 | 107 140 141 | syl2anc | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝑋 } ) ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑋 } ) ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) |
| 143 | 21 142 | jca | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) : ( 𝐴 ∪ { 𝑋 } ) ⟶ ( 𝐵 ∪ { 𝑌 } ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝑋 } ) ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑋 } ) ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) ) |
| 144 | rnun | ⊢ ran ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) = ( ran 𝐺 ∪ ran { 〈 𝑋 , 𝑌 〉 } ) | |
| 145 | f1ofo | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → 𝐺 : 𝐴 –onto→ 𝐵 ) | |
| 146 | forn | ⊢ ( 𝐺 : 𝐴 –onto→ 𝐵 → ran 𝐺 = 𝐵 ) | |
| 147 | 145 146 | syl | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → ran 𝐺 = 𝐵 ) |
| 148 | 147 | 3ad2ant1 | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ran 𝐺 = 𝐵 ) |
| 149 | rnsnopg | ⊢ ( 𝑋 ∈ 𝑉 → ran { 〈 𝑋 , 𝑌 〉 } = { 𝑌 } ) | |
| 150 | 149 | adantr | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ran { 〈 𝑋 , 𝑌 〉 } = { 𝑌 } ) |
| 151 | 150 | 3ad2ant2 | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ran { 〈 𝑋 , 𝑌 〉 } = { 𝑌 } ) |
| 152 | 148 151 | uneq12d | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ( ran 𝐺 ∪ ran { 〈 𝑋 , 𝑌 〉 } ) = ( 𝐵 ∪ { 𝑌 } ) ) |
| 153 | 144 152 | eqtrid | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ran ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) = ( 𝐵 ∪ { 𝑌 } ) ) |
| 154 | 143 153 | jca | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ( ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) : ( 𝐴 ∪ { 𝑋 } ) ⟶ ( 𝐵 ∪ { 𝑌 } ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝑋 } ) ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑋 } ) ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) ∧ ran ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) = ( 𝐵 ∪ { 𝑌 } ) ) ) |
| 155 | dff1o5 | ⊢ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) : ( 𝐴 ∪ { 𝑋 } ) –1-1-onto→ ( 𝐵 ∪ { 𝑌 } ) ↔ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) : ( 𝐴 ∪ { 𝑋 } ) –1-1→ ( 𝐵 ∪ { 𝑌 } ) ∧ ran ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) = ( 𝐵 ∪ { 𝑌 } ) ) ) | |
| 156 | dff14a | ⊢ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) : ( 𝐴 ∪ { 𝑋 } ) –1-1→ ( 𝐵 ∪ { 𝑌 } ) ↔ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) : ( 𝐴 ∪ { 𝑋 } ) ⟶ ( 𝐵 ∪ { 𝑌 } ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝑋 } ) ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑋 } ) ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) ) | |
| 157 | 155 156 | bianbi | ⊢ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) : ( 𝐴 ∪ { 𝑋 } ) –1-1-onto→ ( 𝐵 ∪ { 𝑌 } ) ↔ ( ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) : ( 𝐴 ∪ { 𝑋 } ) ⟶ ( 𝐵 ∪ { 𝑌 } ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝑋 } ) ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑋 } ) ( 𝑥 ≠ 𝑦 → ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑥 ) ≠ ( ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑦 ) ) ) ∧ ran ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) = ( 𝐵 ∪ { 𝑌 } ) ) ) |
| 158 | 154 157 | sylibr | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) : ( 𝐴 ∪ { 𝑋 } ) –1-1-onto→ ( 𝐵 ∪ { 𝑌 } ) ) |
| 159 | f1oeq1 | ⊢ ( 𝐹 = ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) → ( 𝐹 : ( 𝐴 ∪ { 𝑋 } ) –1-1-onto→ ( 𝐵 ∪ { 𝑌 } ) ↔ ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) : ( 𝐴 ∪ { 𝑋 } ) –1-1-onto→ ( 𝐵 ∪ { 𝑌 } ) ) ) | |
| 160 | 1 159 | ax-mp | ⊢ ( 𝐹 : ( 𝐴 ∪ { 𝑋 } ) –1-1-onto→ ( 𝐵 ∪ { 𝑌 } ) ↔ ( 𝐺 ∪ { 〈 𝑋 , 𝑌 〉 } ) : ( 𝐴 ∪ { 𝑋 } ) –1-1-onto→ ( 𝐵 ∪ { 𝑌 } ) ) |
| 161 | 158 160 | sylibr | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( 𝑋 ∉ 𝐴 ∧ 𝑌 ∉ 𝐵 ) ) → 𝐹 : ( 𝐴 ∪ { 𝑋 } ) –1-1-onto→ ( 𝐵 ∪ { 𝑌 } ) ) |