This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricting a bijection, which is a mapping from a restricted class abstraction, to a subset is a bijection. (Contributed by AV, 7-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1ossf1o.x | ⊢ 𝑋 = { 𝑤 ∈ 𝐴 ∣ ( 𝜓 ∧ 𝜒 ) } | |
| f1ossf1o.y | ⊢ 𝑌 = { 𝑤 ∈ 𝐴 ∣ 𝜓 } | ||
| f1ossf1o.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) | ||
| f1ossf1o.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) | ||
| f1ossf1o.b | ⊢ ( 𝜑 → 𝐺 : 𝑌 –1-1-onto→ 𝐶 ) | ||
| f1ossf1o.s | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ∧ 𝑦 = 𝐵 ) → ( 𝜏 ↔ [ 𝑥 / 𝑤 ] 𝜒 ) ) | ||
| Assertion | f1ossf1o | ⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1-onto→ { 𝑦 ∈ 𝐶 ∣ 𝜏 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ossf1o.x | ⊢ 𝑋 = { 𝑤 ∈ 𝐴 ∣ ( 𝜓 ∧ 𝜒 ) } | |
| 2 | f1ossf1o.y | ⊢ 𝑌 = { 𝑤 ∈ 𝐴 ∣ 𝜓 } | |
| 3 | f1ossf1o.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) | |
| 4 | f1ossf1o.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) | |
| 5 | f1ossf1o.b | ⊢ ( 𝜑 → 𝐺 : 𝑌 –1-1-onto→ 𝐶 ) | |
| 6 | f1ossf1o.s | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ∧ 𝑦 = 𝐵 ) → ( 𝜏 ↔ [ 𝑥 / 𝑤 ] 𝜒 ) ) | |
| 7 | 4 5 6 | f1oresrab | ⊢ ( 𝜑 → ( 𝐺 ↾ { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } ) : { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } –1-1-onto→ { 𝑦 ∈ 𝐶 ∣ 𝜏 } ) |
| 8 | simpl | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜓 ) | |
| 9 | 8 | a1i | ⊢ ( 𝑤 ∈ 𝐴 → ( ( 𝜓 ∧ 𝜒 ) → 𝜓 ) ) |
| 10 | 9 | ss2rabi | ⊢ { 𝑤 ∈ 𝐴 ∣ ( 𝜓 ∧ 𝜒 ) } ⊆ { 𝑤 ∈ 𝐴 ∣ 𝜓 } |
| 11 | 10 1 2 | 3sstr4i | ⊢ 𝑋 ⊆ 𝑌 |
| 12 | 11 | a1i | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑌 ) |
| 13 | 12 | resmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) ↾ 𝑋 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 14 | 4 | a1i | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) ) |
| 15 | 2 | rabeqi | ⊢ { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } = { 𝑥 ∈ { 𝑤 ∈ 𝐴 ∣ 𝜓 } ∣ [ 𝑥 / 𝑤 ] 𝜒 } |
| 16 | nfcv | ⊢ Ⅎ 𝑤 𝑥 | |
| 17 | nfcv | ⊢ Ⅎ 𝑤 𝐴 | |
| 18 | nfs1v | ⊢ Ⅎ 𝑤 [ 𝑥 / 𝑤 ] 𝜓 | |
| 19 | sbequ12 | ⊢ ( 𝑤 = 𝑥 → ( 𝜓 ↔ [ 𝑥 / 𝑤 ] 𝜓 ) ) | |
| 20 | 16 17 18 19 | elrabf | ⊢ ( 𝑥 ∈ { 𝑤 ∈ 𝐴 ∣ 𝜓 } ↔ ( 𝑥 ∈ 𝐴 ∧ [ 𝑥 / 𝑤 ] 𝜓 ) ) |
| 21 | 20 | anbi1i | ⊢ ( ( 𝑥 ∈ { 𝑤 ∈ 𝐴 ∣ 𝜓 } ∧ [ 𝑥 / 𝑤 ] 𝜒 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ [ 𝑥 / 𝑤 ] 𝜓 ) ∧ [ 𝑥 / 𝑤 ] 𝜒 ) ) |
| 22 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ [ 𝑥 / 𝑤 ] 𝜓 ) ∧ [ 𝑥 / 𝑤 ] 𝜒 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( [ 𝑥 / 𝑤 ] 𝜓 ∧ [ 𝑥 / 𝑤 ] 𝜒 ) ) ) | |
| 23 | 21 22 | bitri | ⊢ ( ( 𝑥 ∈ { 𝑤 ∈ 𝐴 ∣ 𝜓 } ∧ [ 𝑥 / 𝑤 ] 𝜒 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( [ 𝑥 / 𝑤 ] 𝜓 ∧ [ 𝑥 / 𝑤 ] 𝜒 ) ) ) |
| 24 | 23 | rabbia2 | ⊢ { 𝑥 ∈ { 𝑤 ∈ 𝐴 ∣ 𝜓 } ∣ [ 𝑥 / 𝑤 ] 𝜒 } = { 𝑥 ∈ 𝐴 ∣ ( [ 𝑥 / 𝑤 ] 𝜓 ∧ [ 𝑥 / 𝑤 ] 𝜒 ) } |
| 25 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 26 | nfv | ⊢ Ⅎ 𝑥 ( 𝜓 ∧ 𝜒 ) | |
| 27 | nfs1v | ⊢ Ⅎ 𝑤 [ 𝑥 / 𝑤 ] 𝜒 | |
| 28 | 18 27 | nfan | ⊢ Ⅎ 𝑤 ( [ 𝑥 / 𝑤 ] 𝜓 ∧ [ 𝑥 / 𝑤 ] 𝜒 ) |
| 29 | sbequ12 | ⊢ ( 𝑤 = 𝑥 → ( 𝜒 ↔ [ 𝑥 / 𝑤 ] 𝜒 ) ) | |
| 30 | 19 29 | anbi12d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝜓 ∧ 𝜒 ) ↔ ( [ 𝑥 / 𝑤 ] 𝜓 ∧ [ 𝑥 / 𝑤 ] 𝜒 ) ) ) |
| 31 | 17 25 26 28 30 | cbvrabw | ⊢ { 𝑤 ∈ 𝐴 ∣ ( 𝜓 ∧ 𝜒 ) } = { 𝑥 ∈ 𝐴 ∣ ( [ 𝑥 / 𝑤 ] 𝜓 ∧ [ 𝑥 / 𝑤 ] 𝜒 ) } |
| 32 | 1 31 | eqtr2i | ⊢ { 𝑥 ∈ 𝐴 ∣ ( [ 𝑥 / 𝑤 ] 𝜓 ∧ [ 𝑥 / 𝑤 ] 𝜒 ) } = 𝑋 |
| 33 | 15 24 32 | 3eqtri | ⊢ { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } = 𝑋 |
| 34 | 33 | a1i | ⊢ ( 𝜑 → { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } = 𝑋 ) |
| 35 | 14 34 | reseq12d | ⊢ ( 𝜑 → ( 𝐺 ↾ { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } ) = ( ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) ↾ 𝑋 ) ) |
| 36 | 3 | a1i | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 37 | 13 35 36 | 3eqtr4rd | ⊢ ( 𝜑 → 𝐹 = ( 𝐺 ↾ { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } ) ) |
| 38 | 15 24 | eqtr2i | ⊢ { 𝑥 ∈ 𝐴 ∣ ( [ 𝑥 / 𝑤 ] 𝜓 ∧ [ 𝑥 / 𝑤 ] 𝜒 ) } = { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } |
| 39 | 1 31 38 | 3eqtri | ⊢ 𝑋 = { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } |
| 40 | 39 | a1i | ⊢ ( 𝜑 → 𝑋 = { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } ) |
| 41 | eqidd | ⊢ ( 𝜑 → { 𝑦 ∈ 𝐶 ∣ 𝜏 } = { 𝑦 ∈ 𝐶 ∣ 𝜏 } ) | |
| 42 | 37 40 41 | f1oeq123d | ⊢ ( 𝜑 → ( 𝐹 : 𝑋 –1-1-onto→ { 𝑦 ∈ 𝐶 ∣ 𝜏 } ↔ ( 𝐺 ↾ { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } ) : { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } –1-1-onto→ { 𝑦 ∈ 𝐶 ∣ 𝜏 } ) ) |
| 43 | 7 42 | mpbird | ⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1-onto→ { 𝑦 ∈ 𝐶 ∣ 𝜏 } ) |