This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricting a bijection, which is a mapping from a restricted class abstraction, to a subset is a bijection. (Contributed by AV, 7-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1ossf1o.x | |- X = { w e. A | ( ps /\ ch ) } |
|
| f1ossf1o.y | |- Y = { w e. A | ps } |
||
| f1ossf1o.f | |- F = ( x e. X |-> B ) |
||
| f1ossf1o.g | |- G = ( x e. Y |-> B ) |
||
| f1ossf1o.b | |- ( ph -> G : Y -1-1-onto-> C ) |
||
| f1ossf1o.s | |- ( ( ph /\ x e. Y /\ y = B ) -> ( ta <-> [ x / w ] ch ) ) |
||
| Assertion | f1ossf1o | |- ( ph -> F : X -1-1-onto-> { y e. C | ta } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ossf1o.x | |- X = { w e. A | ( ps /\ ch ) } |
|
| 2 | f1ossf1o.y | |- Y = { w e. A | ps } |
|
| 3 | f1ossf1o.f | |- F = ( x e. X |-> B ) |
|
| 4 | f1ossf1o.g | |- G = ( x e. Y |-> B ) |
|
| 5 | f1ossf1o.b | |- ( ph -> G : Y -1-1-onto-> C ) |
|
| 6 | f1ossf1o.s | |- ( ( ph /\ x e. Y /\ y = B ) -> ( ta <-> [ x / w ] ch ) ) |
|
| 7 | 4 5 6 | f1oresrab | |- ( ph -> ( G |` { x e. Y | [ x / w ] ch } ) : { x e. Y | [ x / w ] ch } -1-1-onto-> { y e. C | ta } ) |
| 8 | simpl | |- ( ( ps /\ ch ) -> ps ) |
|
| 9 | 8 | a1i | |- ( w e. A -> ( ( ps /\ ch ) -> ps ) ) |
| 10 | 9 | ss2rabi | |- { w e. A | ( ps /\ ch ) } C_ { w e. A | ps } |
| 11 | 10 1 2 | 3sstr4i | |- X C_ Y |
| 12 | 11 | a1i | |- ( ph -> X C_ Y ) |
| 13 | 12 | resmptd | |- ( ph -> ( ( x e. Y |-> B ) |` X ) = ( x e. X |-> B ) ) |
| 14 | 4 | a1i | |- ( ph -> G = ( x e. Y |-> B ) ) |
| 15 | 2 | rabeqi | |- { x e. Y | [ x / w ] ch } = { x e. { w e. A | ps } | [ x / w ] ch } |
| 16 | nfcv | |- F/_ w x |
|
| 17 | nfcv | |- F/_ w A |
|
| 18 | nfs1v | |- F/ w [ x / w ] ps |
|
| 19 | sbequ12 | |- ( w = x -> ( ps <-> [ x / w ] ps ) ) |
|
| 20 | 16 17 18 19 | elrabf | |- ( x e. { w e. A | ps } <-> ( x e. A /\ [ x / w ] ps ) ) |
| 21 | 20 | anbi1i | |- ( ( x e. { w e. A | ps } /\ [ x / w ] ch ) <-> ( ( x e. A /\ [ x / w ] ps ) /\ [ x / w ] ch ) ) |
| 22 | anass | |- ( ( ( x e. A /\ [ x / w ] ps ) /\ [ x / w ] ch ) <-> ( x e. A /\ ( [ x / w ] ps /\ [ x / w ] ch ) ) ) |
|
| 23 | 21 22 | bitri | |- ( ( x e. { w e. A | ps } /\ [ x / w ] ch ) <-> ( x e. A /\ ( [ x / w ] ps /\ [ x / w ] ch ) ) ) |
| 24 | 23 | rabbia2 | |- { x e. { w e. A | ps } | [ x / w ] ch } = { x e. A | ( [ x / w ] ps /\ [ x / w ] ch ) } |
| 25 | nfcv | |- F/_ x A |
|
| 26 | nfv | |- F/ x ( ps /\ ch ) |
|
| 27 | nfs1v | |- F/ w [ x / w ] ch |
|
| 28 | 18 27 | nfan | |- F/ w ( [ x / w ] ps /\ [ x / w ] ch ) |
| 29 | sbequ12 | |- ( w = x -> ( ch <-> [ x / w ] ch ) ) |
|
| 30 | 19 29 | anbi12d | |- ( w = x -> ( ( ps /\ ch ) <-> ( [ x / w ] ps /\ [ x / w ] ch ) ) ) |
| 31 | 17 25 26 28 30 | cbvrabw | |- { w e. A | ( ps /\ ch ) } = { x e. A | ( [ x / w ] ps /\ [ x / w ] ch ) } |
| 32 | 1 31 | eqtr2i | |- { x e. A | ( [ x / w ] ps /\ [ x / w ] ch ) } = X |
| 33 | 15 24 32 | 3eqtri | |- { x e. Y | [ x / w ] ch } = X |
| 34 | 33 | a1i | |- ( ph -> { x e. Y | [ x / w ] ch } = X ) |
| 35 | 14 34 | reseq12d | |- ( ph -> ( G |` { x e. Y | [ x / w ] ch } ) = ( ( x e. Y |-> B ) |` X ) ) |
| 36 | 3 | a1i | |- ( ph -> F = ( x e. X |-> B ) ) |
| 37 | 13 35 36 | 3eqtr4rd | |- ( ph -> F = ( G |` { x e. Y | [ x / w ] ch } ) ) |
| 38 | 15 24 | eqtr2i | |- { x e. A | ( [ x / w ] ps /\ [ x / w ] ch ) } = { x e. Y | [ x / w ] ch } |
| 39 | 1 31 38 | 3eqtri | |- X = { x e. Y | [ x / w ] ch } |
| 40 | 39 | a1i | |- ( ph -> X = { x e. Y | [ x / w ] ch } ) |
| 41 | eqidd | |- ( ph -> { y e. C | ta } = { y e. C | ta } ) |
|
| 42 | 37 40 41 | f1oeq123d | |- ( ph -> ( F : X -1-1-onto-> { y e. C | ta } <-> ( G |` { x e. Y | [ x / w ] ch } ) : { x e. Y | [ x / w ] ch } -1-1-onto-> { y e. C | ta } ) ) |
| 43 | 7 42 | mpbird | |- ( ph -> F : X -1-1-onto-> { y e. C | ta } ) |