This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite subset of a union is covered by finitely many elements. (Contributed by Stefan O'Rear, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fissuni | ⊢ ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin ) → ∃ 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 ⊆ ∪ 𝑐 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin ) → 𝐴 ∈ Fin ) | |
| 2 | dfss3 | ⊢ ( 𝐴 ⊆ ∪ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ 𝐵 ) | |
| 3 | eluni2 | ⊢ ( 𝑥 ∈ ∪ 𝐵 ↔ ∃ 𝑧 ∈ 𝐵 𝑥 ∈ 𝑧 ) | |
| 4 | 3 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 ∈ 𝑧 ) |
| 5 | 2 4 | sylbb | ⊢ ( 𝐴 ⊆ ∪ 𝐵 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 ∈ 𝑧 ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 ∈ 𝑧 ) |
| 7 | eleq2 | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑥 ) → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 8 | 7 | ac6sfi | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 ∈ 𝑧 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
| 9 | 1 6 8 | syl2anc | ⊢ ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
| 10 | fimass | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → ( 𝑓 “ 𝐴 ) ⊆ 𝐵 ) | |
| 11 | vex | ⊢ 𝑓 ∈ V | |
| 12 | 11 | imaex | ⊢ ( 𝑓 “ 𝐴 ) ∈ V |
| 13 | 12 | elpw | ⊢ ( ( 𝑓 “ 𝐴 ) ∈ 𝒫 𝐵 ↔ ( 𝑓 “ 𝐴 ) ⊆ 𝐵 ) |
| 14 | 10 13 | sylibr | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → ( 𝑓 “ 𝐴 ) ∈ 𝒫 𝐵 ) |
| 15 | 14 | ad2antrl | ⊢ ( ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) ) → ( 𝑓 “ 𝐴 ) ∈ 𝒫 𝐵 ) |
| 16 | ffun | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → Fun 𝑓 ) | |
| 17 | 16 | ad2antrl | ⊢ ( ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) ) → Fun 𝑓 ) |
| 18 | simplr | ⊢ ( ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) ) → 𝐴 ∈ Fin ) | |
| 19 | imafi | ⊢ ( ( Fun 𝑓 ∧ 𝐴 ∈ Fin ) → ( 𝑓 “ 𝐴 ) ∈ Fin ) | |
| 20 | 17 18 19 | syl2anc | ⊢ ( ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) ) → ( 𝑓 “ 𝐴 ) ∈ Fin ) |
| 21 | 15 20 | elind | ⊢ ( ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) ) → ( 𝑓 “ 𝐴 ) ∈ ( 𝒫 𝐵 ∩ Fin ) ) |
| 22 | ffn | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → 𝑓 Fn 𝐴 ) | |
| 23 | 22 | adantr | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑓 Fn 𝐴 ) |
| 24 | ssidd | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ 𝐴 ) | |
| 25 | simpr | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 26 | fnfvima | ⊢ ( ( 𝑓 Fn 𝐴 ∧ 𝐴 ⊆ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 “ 𝐴 ) ) | |
| 27 | 23 24 25 26 | syl3anc | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 “ 𝐴 ) ) |
| 28 | elssuni | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 “ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ⊆ ∪ ( 𝑓 “ 𝐴 ) ) | |
| 29 | 27 28 | syl | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ⊆ ∪ ( 𝑓 “ 𝐴 ) ) |
| 30 | 29 | sseld | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) → 𝑥 ∈ ∪ ( 𝑓 “ 𝐴 ) ) ) |
| 31 | 30 | ralimdva | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑓 “ 𝐴 ) ) ) |
| 32 | 31 | imp | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑓 “ 𝐴 ) ) |
| 33 | dfss3 | ⊢ ( 𝐴 ⊆ ∪ ( 𝑓 “ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑓 “ 𝐴 ) ) | |
| 34 | 32 33 | sylibr | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) → 𝐴 ⊆ ∪ ( 𝑓 “ 𝐴 ) ) |
| 35 | 34 | adantl | ⊢ ( ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) ) → 𝐴 ⊆ ∪ ( 𝑓 “ 𝐴 ) ) |
| 36 | unieq | ⊢ ( 𝑐 = ( 𝑓 “ 𝐴 ) → ∪ 𝑐 = ∪ ( 𝑓 “ 𝐴 ) ) | |
| 37 | 36 | sseq2d | ⊢ ( 𝑐 = ( 𝑓 “ 𝐴 ) → ( 𝐴 ⊆ ∪ 𝑐 ↔ 𝐴 ⊆ ∪ ( 𝑓 “ 𝐴 ) ) ) |
| 38 | 37 | rspcev | ⊢ ( ( ( 𝑓 “ 𝐴 ) ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝐴 ⊆ ∪ ( 𝑓 “ 𝐴 ) ) → ∃ 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 ⊆ ∪ 𝑐 ) |
| 39 | 21 35 38 | syl2anc | ⊢ ( ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) ) → ∃ 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 ⊆ ∪ 𝑐 ) |
| 40 | 9 39 | exlimddv | ⊢ ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin ) → ∃ 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 ⊆ ∪ 𝑐 ) |