This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The codomain of a 1-1 function from a set with three different elements has (at least) three different elements. (Contributed by AV, 20-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1dom3fv3dif.v | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) | |
| f1dom3fv3dif.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) | ||
| f1dom3fv3dif.f | ⊢ ( 𝜑 → 𝐹 : { 𝐴 , 𝐵 , 𝐶 } –1-1→ 𝑅 ) | ||
| Assertion | f1dom3el3dif | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑅 ∃ 𝑧 ∈ 𝑅 ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1dom3fv3dif.v | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) | |
| 2 | f1dom3fv3dif.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) | |
| 3 | f1dom3fv3dif.f | ⊢ ( 𝜑 → 𝐹 : { 𝐴 , 𝐵 , 𝐶 } –1-1→ 𝑅 ) | |
| 4 | f1f | ⊢ ( 𝐹 : { 𝐴 , 𝐵 , 𝐶 } –1-1→ 𝑅 → 𝐹 : { 𝐴 , 𝐵 , 𝐶 } ⟶ 𝑅 ) | |
| 5 | simpr | ⊢ ( ( 𝜑 ∧ 𝐹 : { 𝐴 , 𝐵 , 𝐶 } ⟶ 𝑅 ) → 𝐹 : { 𝐴 , 𝐵 , 𝐶 } ⟶ 𝑅 ) | |
| 6 | eqidd | ⊢ ( 𝜑 → 𝐴 = 𝐴 ) | |
| 7 | 6 | 3mix1d | ⊢ ( 𝜑 → ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) |
| 8 | 1 | simp1d | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| 9 | eltpg | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) ) |
| 11 | 7 10 | mpbird | ⊢ ( 𝜑 → 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 : { 𝐴 , 𝐵 , 𝐶 } ⟶ 𝑅 ) → 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 13 | 5 12 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝐹 : { 𝐴 , 𝐵 , 𝐶 } ⟶ 𝑅 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑅 ) |
| 14 | eqidd | ⊢ ( 𝜑 → 𝐵 = 𝐵 ) | |
| 15 | 14 | 3mix2d | ⊢ ( 𝜑 → ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶 ) ) |
| 16 | 1 | simp2d | ⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) |
| 17 | eltpg | ⊢ ( 𝐵 ∈ 𝑌 → ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶 ) ) ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶 ) ) ) |
| 19 | 15 18 | mpbird | ⊢ ( 𝜑 → 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 : { 𝐴 , 𝐵 , 𝐶 } ⟶ 𝑅 ) → 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 21 | 5 20 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝐹 : { 𝐴 , 𝐵 , 𝐶 } ⟶ 𝑅 ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝑅 ) |
| 22 | 1 | simp3d | ⊢ ( 𝜑 → 𝐶 ∈ 𝑍 ) |
| 23 | tpid3g | ⊢ ( 𝐶 ∈ 𝑍 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) | |
| 24 | 22 23 | syl | ⊢ ( 𝜑 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 25 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 : { 𝐴 , 𝐵 , 𝐶 } ⟶ 𝑅 ) → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 26 | 5 25 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝐹 : { 𝐴 , 𝐵 , 𝐶 } ⟶ 𝑅 ) → ( 𝐹 ‘ 𝐶 ) ∈ 𝑅 ) |
| 27 | 13 21 26 | 3jca | ⊢ ( ( 𝜑 ∧ 𝐹 : { 𝐴 , 𝐵 , 𝐶 } ⟶ 𝑅 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) ∈ 𝑅 ) ) |
| 28 | 27 | expcom | ⊢ ( 𝐹 : { 𝐴 , 𝐵 , 𝐶 } ⟶ 𝑅 → ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) ∈ 𝑅 ) ) ) |
| 29 | 4 28 | syl | ⊢ ( 𝐹 : { 𝐴 , 𝐵 , 𝐶 } –1-1→ 𝑅 → ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) ∈ 𝑅 ) ) ) |
| 30 | 3 29 | mpcom | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) ∈ 𝑅 ) ) |
| 31 | 1 2 3 | f1dom3fv3dif | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐹 ‘ 𝐵 ) ≠ ( 𝐹 ‘ 𝐶 ) ) ) |
| 32 | neeq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝐴 ) → ( 𝑥 ≠ 𝑦 ↔ ( 𝐹 ‘ 𝐴 ) ≠ 𝑦 ) ) | |
| 33 | neeq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝐴 ) → ( 𝑥 ≠ 𝑧 ↔ ( 𝐹 ‘ 𝐴 ) ≠ 𝑧 ) ) | |
| 34 | 32 33 | 3anbi12d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝐴 ) → ( ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ↔ ( ( 𝐹 ‘ 𝐴 ) ≠ 𝑦 ∧ ( 𝐹 ‘ 𝐴 ) ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) ) |
| 35 | neeq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝐵 ) → ( ( 𝐹 ‘ 𝐴 ) ≠ 𝑦 ↔ ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ) ) | |
| 36 | neeq1 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝐵 ) → ( 𝑦 ≠ 𝑧 ↔ ( 𝐹 ‘ 𝐵 ) ≠ 𝑧 ) ) | |
| 37 | 35 36 | 3anbi13d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝐵 ) → ( ( ( 𝐹 ‘ 𝐴 ) ≠ 𝑦 ∧ ( 𝐹 ‘ 𝐴 ) ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ↔ ( ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐴 ) ≠ 𝑧 ∧ ( 𝐹 ‘ 𝐵 ) ≠ 𝑧 ) ) ) |
| 38 | neeq2 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝐶 ) → ( ( 𝐹 ‘ 𝐴 ) ≠ 𝑧 ↔ ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐶 ) ) ) | |
| 39 | neeq2 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝐶 ) → ( ( 𝐹 ‘ 𝐵 ) ≠ 𝑧 ↔ ( 𝐹 ‘ 𝐵 ) ≠ ( 𝐹 ‘ 𝐶 ) ) ) | |
| 40 | 38 39 | 3anbi23d | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝐶 ) → ( ( ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐴 ) ≠ 𝑧 ∧ ( 𝐹 ‘ 𝐵 ) ≠ 𝑧 ) ↔ ( ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐹 ‘ 𝐵 ) ≠ ( 𝐹 ‘ 𝐶 ) ) ) ) |
| 41 | 34 37 40 | rspc3ev | ⊢ ( ( ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) ∈ 𝑅 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐹 ‘ 𝐵 ) ≠ ( 𝐹 ‘ 𝐶 ) ) ) → ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑅 ∃ 𝑧 ∈ 𝑅 ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) |
| 42 | 30 31 41 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑅 ∃ 𝑧 ∈ 𝑅 ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) |