This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function values for a 1-1 function from a set with three different elements are different. (Contributed by AV, 20-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1dom3fv3dif.v | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) | |
| f1dom3fv3dif.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) | ||
| f1dom3fv3dif.f | ⊢ ( 𝜑 → 𝐹 : { 𝐴 , 𝐵 , 𝐶 } –1-1→ 𝑅 ) | ||
| Assertion | f1dom3fv3dif | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐹 ‘ 𝐵 ) ≠ ( 𝐹 ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1dom3fv3dif.v | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) | |
| 2 | f1dom3fv3dif.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) | |
| 3 | f1dom3fv3dif.f | ⊢ ( 𝜑 → 𝐹 : { 𝐴 , 𝐵 , 𝐶 } –1-1→ 𝑅 ) | |
| 4 | 2 | simp1d | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| 5 | eqidd | ⊢ ( 𝜑 → 𝐴 = 𝐴 ) | |
| 6 | 5 | 3mix1d | ⊢ ( 𝜑 → ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) |
| 7 | 1 | simp1d | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| 8 | eltpg | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) ) |
| 10 | 6 9 | mpbird | ⊢ ( 𝜑 → 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 11 | eqidd | ⊢ ( 𝜑 → 𝐵 = 𝐵 ) | |
| 12 | 11 | 3mix2d | ⊢ ( 𝜑 → ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶 ) ) |
| 13 | 1 | simp2d | ⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) |
| 14 | eltpg | ⊢ ( 𝐵 ∈ 𝑌 → ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶 ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶 ) ) ) |
| 16 | 12 15 | mpbird | ⊢ ( 𝜑 → 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 17 | f1fveq | ⊢ ( ( 𝐹 : { 𝐴 , 𝐵 , 𝐶 } –1-1→ 𝑅 ∧ ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) | |
| 18 | 3 10 16 17 | syl12anc | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| 19 | 18 | necon3bid | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ↔ 𝐴 ≠ 𝐵 ) ) |
| 20 | 4 19 | mpbird | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ) |
| 21 | 2 | simp2d | ⊢ ( 𝜑 → 𝐴 ≠ 𝐶 ) |
| 22 | 1 | simp3d | ⊢ ( 𝜑 → 𝐶 ∈ 𝑍 ) |
| 23 | tpid3g | ⊢ ( 𝐶 ∈ 𝑍 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) | |
| 24 | 22 23 | syl | ⊢ ( 𝜑 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 25 | f1fveq | ⊢ ( ( 𝐹 : { 𝐴 , 𝐵 , 𝐶 } –1-1→ 𝑅 ∧ ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐶 ) ↔ 𝐴 = 𝐶 ) ) | |
| 26 | 3 10 24 25 | syl12anc | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐶 ) ↔ 𝐴 = 𝐶 ) ) |
| 27 | 26 | necon3bid | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐶 ) ↔ 𝐴 ≠ 𝐶 ) ) |
| 28 | 21 27 | mpbird | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐶 ) ) |
| 29 | 2 | simp3d | ⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
| 30 | f1fveq | ⊢ ( ( 𝐹 : { 𝐴 , 𝐵 , 𝐶 } –1-1→ 𝑅 ∧ ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) → ( ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) | |
| 31 | 3 16 24 30 | syl12anc | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
| 32 | 31 | necon3bid | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) ≠ ( 𝐹 ‘ 𝐶 ) ↔ 𝐵 ≠ 𝐶 ) ) |
| 33 | 29 32 | mpbird | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ≠ ( 𝐹 ‘ 𝐶 ) ) |
| 34 | 20 28 33 | 3jca | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐹 ‘ 𝐵 ) ≠ ( 𝐹 ‘ 𝐶 ) ) ) |