This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The codomain of a 1-1 function from a set with three different elements has (at least) three different elements. (Contributed by AV, 20-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1dom3fv3dif.v | |- ( ph -> ( A e. X /\ B e. Y /\ C e. Z ) ) |
|
| f1dom3fv3dif.n | |- ( ph -> ( A =/= B /\ A =/= C /\ B =/= C ) ) |
||
| f1dom3fv3dif.f | |- ( ph -> F : { A , B , C } -1-1-> R ) |
||
| Assertion | f1dom3el3dif | |- ( ph -> E. x e. R E. y e. R E. z e. R ( x =/= y /\ x =/= z /\ y =/= z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1dom3fv3dif.v | |- ( ph -> ( A e. X /\ B e. Y /\ C e. Z ) ) |
|
| 2 | f1dom3fv3dif.n | |- ( ph -> ( A =/= B /\ A =/= C /\ B =/= C ) ) |
|
| 3 | f1dom3fv3dif.f | |- ( ph -> F : { A , B , C } -1-1-> R ) |
|
| 4 | f1f | |- ( F : { A , B , C } -1-1-> R -> F : { A , B , C } --> R ) |
|
| 5 | simpr | |- ( ( ph /\ F : { A , B , C } --> R ) -> F : { A , B , C } --> R ) |
|
| 6 | eqidd | |- ( ph -> A = A ) |
|
| 7 | 6 | 3mix1d | |- ( ph -> ( A = A \/ A = B \/ A = C ) ) |
| 8 | 1 | simp1d | |- ( ph -> A e. X ) |
| 9 | eltpg | |- ( A e. X -> ( A e. { A , B , C } <-> ( A = A \/ A = B \/ A = C ) ) ) |
|
| 10 | 8 9 | syl | |- ( ph -> ( A e. { A , B , C } <-> ( A = A \/ A = B \/ A = C ) ) ) |
| 11 | 7 10 | mpbird | |- ( ph -> A e. { A , B , C } ) |
| 12 | 11 | adantr | |- ( ( ph /\ F : { A , B , C } --> R ) -> A e. { A , B , C } ) |
| 13 | 5 12 | ffvelcdmd | |- ( ( ph /\ F : { A , B , C } --> R ) -> ( F ` A ) e. R ) |
| 14 | eqidd | |- ( ph -> B = B ) |
|
| 15 | 14 | 3mix2d | |- ( ph -> ( B = A \/ B = B \/ B = C ) ) |
| 16 | 1 | simp2d | |- ( ph -> B e. Y ) |
| 17 | eltpg | |- ( B e. Y -> ( B e. { A , B , C } <-> ( B = A \/ B = B \/ B = C ) ) ) |
|
| 18 | 16 17 | syl | |- ( ph -> ( B e. { A , B , C } <-> ( B = A \/ B = B \/ B = C ) ) ) |
| 19 | 15 18 | mpbird | |- ( ph -> B e. { A , B , C } ) |
| 20 | 19 | adantr | |- ( ( ph /\ F : { A , B , C } --> R ) -> B e. { A , B , C } ) |
| 21 | 5 20 | ffvelcdmd | |- ( ( ph /\ F : { A , B , C } --> R ) -> ( F ` B ) e. R ) |
| 22 | 1 | simp3d | |- ( ph -> C e. Z ) |
| 23 | tpid3g | |- ( C e. Z -> C e. { A , B , C } ) |
|
| 24 | 22 23 | syl | |- ( ph -> C e. { A , B , C } ) |
| 25 | 24 | adantr | |- ( ( ph /\ F : { A , B , C } --> R ) -> C e. { A , B , C } ) |
| 26 | 5 25 | ffvelcdmd | |- ( ( ph /\ F : { A , B , C } --> R ) -> ( F ` C ) e. R ) |
| 27 | 13 21 26 | 3jca | |- ( ( ph /\ F : { A , B , C } --> R ) -> ( ( F ` A ) e. R /\ ( F ` B ) e. R /\ ( F ` C ) e. R ) ) |
| 28 | 27 | expcom | |- ( F : { A , B , C } --> R -> ( ph -> ( ( F ` A ) e. R /\ ( F ` B ) e. R /\ ( F ` C ) e. R ) ) ) |
| 29 | 4 28 | syl | |- ( F : { A , B , C } -1-1-> R -> ( ph -> ( ( F ` A ) e. R /\ ( F ` B ) e. R /\ ( F ` C ) e. R ) ) ) |
| 30 | 3 29 | mpcom | |- ( ph -> ( ( F ` A ) e. R /\ ( F ` B ) e. R /\ ( F ` C ) e. R ) ) |
| 31 | 1 2 3 | f1dom3fv3dif | |- ( ph -> ( ( F ` A ) =/= ( F ` B ) /\ ( F ` A ) =/= ( F ` C ) /\ ( F ` B ) =/= ( F ` C ) ) ) |
| 32 | neeq1 | |- ( x = ( F ` A ) -> ( x =/= y <-> ( F ` A ) =/= y ) ) |
|
| 33 | neeq1 | |- ( x = ( F ` A ) -> ( x =/= z <-> ( F ` A ) =/= z ) ) |
|
| 34 | 32 33 | 3anbi12d | |- ( x = ( F ` A ) -> ( ( x =/= y /\ x =/= z /\ y =/= z ) <-> ( ( F ` A ) =/= y /\ ( F ` A ) =/= z /\ y =/= z ) ) ) |
| 35 | neeq2 | |- ( y = ( F ` B ) -> ( ( F ` A ) =/= y <-> ( F ` A ) =/= ( F ` B ) ) ) |
|
| 36 | neeq1 | |- ( y = ( F ` B ) -> ( y =/= z <-> ( F ` B ) =/= z ) ) |
|
| 37 | 35 36 | 3anbi13d | |- ( y = ( F ` B ) -> ( ( ( F ` A ) =/= y /\ ( F ` A ) =/= z /\ y =/= z ) <-> ( ( F ` A ) =/= ( F ` B ) /\ ( F ` A ) =/= z /\ ( F ` B ) =/= z ) ) ) |
| 38 | neeq2 | |- ( z = ( F ` C ) -> ( ( F ` A ) =/= z <-> ( F ` A ) =/= ( F ` C ) ) ) |
|
| 39 | neeq2 | |- ( z = ( F ` C ) -> ( ( F ` B ) =/= z <-> ( F ` B ) =/= ( F ` C ) ) ) |
|
| 40 | 38 39 | 3anbi23d | |- ( z = ( F ` C ) -> ( ( ( F ` A ) =/= ( F ` B ) /\ ( F ` A ) =/= z /\ ( F ` B ) =/= z ) <-> ( ( F ` A ) =/= ( F ` B ) /\ ( F ` A ) =/= ( F ` C ) /\ ( F ` B ) =/= ( F ` C ) ) ) ) |
| 41 | 34 37 40 | rspc3ev | |- ( ( ( ( F ` A ) e. R /\ ( F ` B ) e. R /\ ( F ` C ) e. R ) /\ ( ( F ` A ) =/= ( F ` B ) /\ ( F ` A ) =/= ( F ` C ) /\ ( F ` B ) =/= ( F ` C ) ) ) -> E. x e. R E. y e. R E. z e. R ( x =/= y /\ x =/= z /\ y =/= z ) ) |
| 42 | 30 31 41 | syl2anc | |- ( ph -> E. x e. R E. y e. R E. z e. R ( x =/= y /\ x =/= z /\ y =/= z ) ) |