This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of exponentiation to positive integer powers. (Contributed by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expnnval | |- ( ( A e. CC /\ N e. NN ) -> ( A ^ N ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 2 | expval | |- ( ( A e. CC /\ N e. ZZ ) -> ( A ^ N ) = if ( N = 0 , 1 , if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( A e. CC /\ N e. NN ) -> ( A ^ N ) = if ( N = 0 , 1 , if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) ) |
| 4 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 5 | 4 | neneqd | |- ( N e. NN -> -. N = 0 ) |
| 6 | 5 | iffalsed | |- ( N e. NN -> if ( N = 0 , 1 , if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) = if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) |
| 7 | nngt0 | |- ( N e. NN -> 0 < N ) |
|
| 8 | 7 | iftrued | |- ( N e. NN -> if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) |
| 9 | 6 8 | eqtrd | |- ( N e. NN -> if ( N = 0 , 1 , if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) |
| 10 | 9 | adantl | |- ( ( A e. CC /\ N e. NN ) -> if ( N = 0 , 1 , if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) |
| 11 | 3 10 | eqtrd | |- ( ( A e. CC /\ N e. NN ) -> ( A ^ N ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) |