This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base ordering relationship for exponentiation of nonnegative reals to a fixed positive integer power. (Contributed by Stefan O'Rear, 16-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expmordi | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑎 = 1 → ( 𝐴 ↑ 𝑎 ) = ( 𝐴 ↑ 1 ) ) | |
| 2 | oveq2 | ⊢ ( 𝑎 = 1 → ( 𝐵 ↑ 𝑎 ) = ( 𝐵 ↑ 1 ) ) | |
| 3 | 1 2 | breq12d | ⊢ ( 𝑎 = 1 → ( ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ↔ ( 𝐴 ↑ 1 ) < ( 𝐵 ↑ 1 ) ) ) |
| 4 | 3 | imbi2d | ⊢ ( 𝑎 = 1 → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ) ↔ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 1 ) < ( 𝐵 ↑ 1 ) ) ) ) |
| 5 | oveq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝐴 ↑ 𝑎 ) = ( 𝐴 ↑ 𝑏 ) ) | |
| 6 | oveq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝐵 ↑ 𝑎 ) = ( 𝐵 ↑ 𝑏 ) ) | |
| 7 | 5 6 | breq12d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ↔ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) ) |
| 8 | 7 | imbi2d | ⊢ ( 𝑎 = 𝑏 → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ) ↔ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) ) ) |
| 9 | oveq2 | ⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝐴 ↑ 𝑎 ) = ( 𝐴 ↑ ( 𝑏 + 1 ) ) ) | |
| 10 | oveq2 | ⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝐵 ↑ 𝑎 ) = ( 𝐵 ↑ ( 𝑏 + 1 ) ) ) | |
| 11 | 9 10 | breq12d | ⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ↔ ( 𝐴 ↑ ( 𝑏 + 1 ) ) < ( 𝐵 ↑ ( 𝑏 + 1 ) ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ) ↔ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) < ( 𝐵 ↑ ( 𝑏 + 1 ) ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑎 = 𝑁 → ( 𝐴 ↑ 𝑎 ) = ( 𝐴 ↑ 𝑁 ) ) | |
| 14 | oveq2 | ⊢ ( 𝑎 = 𝑁 → ( 𝐵 ↑ 𝑎 ) = ( 𝐵 ↑ 𝑁 ) ) | |
| 15 | 13 14 | breq12d | ⊢ ( 𝑎 = 𝑁 → ( ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ↔ ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑎 = 𝑁 → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑎 ) < ( 𝐵 ↑ 𝑎 ) ) ↔ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) ) ) |
| 17 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 18 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 19 | exp1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = 𝐴 ) | |
| 20 | exp1 | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑ 1 ) = 𝐵 ) | |
| 21 | 19 20 | breqan12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 1 ) < ( 𝐵 ↑ 1 ) ↔ 𝐴 < 𝐵 ) ) |
| 22 | 17 18 21 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ↑ 1 ) < ( 𝐵 ↑ 1 ) ↔ 𝐴 < 𝐵 ) ) |
| 23 | 22 | biimpar | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < 𝐵 ) → ( 𝐴 ↑ 1 ) < ( 𝐵 ↑ 1 ) ) |
| 24 | 23 | adantrl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 1 ) < ( 𝐵 ↑ 1 ) ) |
| 25 | simp2ll | ⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → 𝐴 ∈ ℝ ) | |
| 26 | nnnn0 | ⊢ ( 𝑏 ∈ ℕ → 𝑏 ∈ ℕ0 ) | |
| 27 | 26 | 3ad2ant1 | ⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → 𝑏 ∈ ℕ0 ) |
| 28 | 25 27 | reexpcld | ⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 𝐴 ↑ 𝑏 ) ∈ ℝ ) |
| 29 | simp2lr | ⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → 𝐵 ∈ ℝ ) | |
| 30 | 29 27 | reexpcld | ⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 𝐵 ↑ 𝑏 ) ∈ ℝ ) |
| 31 | 28 30 | jca | ⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( ( 𝐴 ↑ 𝑏 ) ∈ ℝ ∧ ( 𝐵 ↑ 𝑏 ) ∈ ℝ ) ) |
| 32 | simp2rl | ⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → 0 ≤ 𝐴 ) | |
| 33 | 25 27 32 | expge0d | ⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → 0 ≤ ( 𝐴 ↑ 𝑏 ) ) |
| 34 | simp3 | ⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) | |
| 35 | 33 34 | jca | ⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 0 ≤ ( 𝐴 ↑ 𝑏 ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) ) |
| 36 | simp2l | ⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) | |
| 37 | simp2r | ⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) | |
| 38 | ltmul12a | ⊢ ( ( ( ( ( 𝐴 ↑ 𝑏 ) ∈ ℝ ∧ ( 𝐵 ↑ 𝑏 ) ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 ↑ 𝑏 ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ) → ( ( 𝐴 ↑ 𝑏 ) · 𝐴 ) < ( ( 𝐵 ↑ 𝑏 ) · 𝐵 ) ) | |
| 39 | 31 35 36 37 38 | syl22anc | ⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( ( 𝐴 ↑ 𝑏 ) · 𝐴 ) < ( ( 𝐵 ↑ 𝑏 ) · 𝐵 ) ) |
| 40 | 25 | recnd | ⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → 𝐴 ∈ ℂ ) |
| 41 | 40 27 | expp1d | ⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) = ( ( 𝐴 ↑ 𝑏 ) · 𝐴 ) ) |
| 42 | 29 | recnd | ⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → 𝐵 ∈ ℂ ) |
| 43 | 42 27 | expp1d | ⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 𝐵 ↑ ( 𝑏 + 1 ) ) = ( ( 𝐵 ↑ 𝑏 ) · 𝐵 ) ) |
| 44 | 39 41 43 | 3brtr4d | ⊢ ( ( 𝑏 ∈ ℕ ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) < ( 𝐵 ↑ ( 𝑏 + 1 ) ) ) |
| 45 | 44 | 3exp | ⊢ ( 𝑏 ∈ ℕ → ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) < ( 𝐵 ↑ ( 𝑏 + 1 ) ) ) ) ) |
| 46 | 45 | a2d | ⊢ ( 𝑏 ∈ ℕ → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑏 ) < ( 𝐵 ↑ 𝑏 ) ) → ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) < ( 𝐵 ↑ ( 𝑏 + 1 ) ) ) ) ) |
| 47 | 4 8 12 16 24 46 | nnind | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) ) |
| 48 | 47 | impcom | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) |
| 49 | 48 | 3impa | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) |