This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base ordering relationship for exponentiation of nonnegative reals to a fixed positive integer power. (Contributed by Stefan O'Rear, 16-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expmordi | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) /\ N e. NN ) -> ( A ^ N ) < ( B ^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( a = 1 -> ( A ^ a ) = ( A ^ 1 ) ) |
|
| 2 | oveq2 | |- ( a = 1 -> ( B ^ a ) = ( B ^ 1 ) ) |
|
| 3 | 1 2 | breq12d | |- ( a = 1 -> ( ( A ^ a ) < ( B ^ a ) <-> ( A ^ 1 ) < ( B ^ 1 ) ) ) |
| 4 | 3 | imbi2d | |- ( a = 1 -> ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ a ) < ( B ^ a ) ) <-> ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ 1 ) < ( B ^ 1 ) ) ) ) |
| 5 | oveq2 | |- ( a = b -> ( A ^ a ) = ( A ^ b ) ) |
|
| 6 | oveq2 | |- ( a = b -> ( B ^ a ) = ( B ^ b ) ) |
|
| 7 | 5 6 | breq12d | |- ( a = b -> ( ( A ^ a ) < ( B ^ a ) <-> ( A ^ b ) < ( B ^ b ) ) ) |
| 8 | 7 | imbi2d | |- ( a = b -> ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ a ) < ( B ^ a ) ) <-> ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ b ) < ( B ^ b ) ) ) ) |
| 9 | oveq2 | |- ( a = ( b + 1 ) -> ( A ^ a ) = ( A ^ ( b + 1 ) ) ) |
|
| 10 | oveq2 | |- ( a = ( b + 1 ) -> ( B ^ a ) = ( B ^ ( b + 1 ) ) ) |
|
| 11 | 9 10 | breq12d | |- ( a = ( b + 1 ) -> ( ( A ^ a ) < ( B ^ a ) <-> ( A ^ ( b + 1 ) ) < ( B ^ ( b + 1 ) ) ) ) |
| 12 | 11 | imbi2d | |- ( a = ( b + 1 ) -> ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ a ) < ( B ^ a ) ) <-> ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ ( b + 1 ) ) < ( B ^ ( b + 1 ) ) ) ) ) |
| 13 | oveq2 | |- ( a = N -> ( A ^ a ) = ( A ^ N ) ) |
|
| 14 | oveq2 | |- ( a = N -> ( B ^ a ) = ( B ^ N ) ) |
|
| 15 | 13 14 | breq12d | |- ( a = N -> ( ( A ^ a ) < ( B ^ a ) <-> ( A ^ N ) < ( B ^ N ) ) ) |
| 16 | 15 | imbi2d | |- ( a = N -> ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ a ) < ( B ^ a ) ) <-> ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ N ) < ( B ^ N ) ) ) ) |
| 17 | recn | |- ( A e. RR -> A e. CC ) |
|
| 18 | recn | |- ( B e. RR -> B e. CC ) |
|
| 19 | exp1 | |- ( A e. CC -> ( A ^ 1 ) = A ) |
|
| 20 | exp1 | |- ( B e. CC -> ( B ^ 1 ) = B ) |
|
| 21 | 19 20 | breqan12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 1 ) < ( B ^ 1 ) <-> A < B ) ) |
| 22 | 17 18 21 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( ( A ^ 1 ) < ( B ^ 1 ) <-> A < B ) ) |
| 23 | 22 | biimpar | |- ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> ( A ^ 1 ) < ( B ^ 1 ) ) |
| 24 | 23 | adantrl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ 1 ) < ( B ^ 1 ) ) |
| 25 | simp2ll | |- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> A e. RR ) |
|
| 26 | nnnn0 | |- ( b e. NN -> b e. NN0 ) |
|
| 27 | 26 | 3ad2ant1 | |- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> b e. NN0 ) |
| 28 | 25 27 | reexpcld | |- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( A ^ b ) e. RR ) |
| 29 | simp2lr | |- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> B e. RR ) |
|
| 30 | 29 27 | reexpcld | |- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( B ^ b ) e. RR ) |
| 31 | 28 30 | jca | |- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( ( A ^ b ) e. RR /\ ( B ^ b ) e. RR ) ) |
| 32 | simp2rl | |- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> 0 <_ A ) |
|
| 33 | 25 27 32 | expge0d | |- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> 0 <_ ( A ^ b ) ) |
| 34 | simp3 | |- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( A ^ b ) < ( B ^ b ) ) |
|
| 35 | 33 34 | jca | |- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( 0 <_ ( A ^ b ) /\ ( A ^ b ) < ( B ^ b ) ) ) |
| 36 | simp2l | |- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( A e. RR /\ B e. RR ) ) |
|
| 37 | simp2r | |- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( 0 <_ A /\ A < B ) ) |
|
| 38 | ltmul12a | |- ( ( ( ( ( A ^ b ) e. RR /\ ( B ^ b ) e. RR ) /\ ( 0 <_ ( A ^ b ) /\ ( A ^ b ) < ( B ^ b ) ) ) /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) ) -> ( ( A ^ b ) x. A ) < ( ( B ^ b ) x. B ) ) |
|
| 39 | 31 35 36 37 38 | syl22anc | |- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( ( A ^ b ) x. A ) < ( ( B ^ b ) x. B ) ) |
| 40 | 25 | recnd | |- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> A e. CC ) |
| 41 | 40 27 | expp1d | |- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( A ^ ( b + 1 ) ) = ( ( A ^ b ) x. A ) ) |
| 42 | 29 | recnd | |- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> B e. CC ) |
| 43 | 42 27 | expp1d | |- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( B ^ ( b + 1 ) ) = ( ( B ^ b ) x. B ) ) |
| 44 | 39 41 43 | 3brtr4d | |- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( A ^ ( b + 1 ) ) < ( B ^ ( b + 1 ) ) ) |
| 45 | 44 | 3exp | |- ( b e. NN -> ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( ( A ^ b ) < ( B ^ b ) -> ( A ^ ( b + 1 ) ) < ( B ^ ( b + 1 ) ) ) ) ) |
| 46 | 45 | a2d | |- ( b e. NN -> ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ b ) < ( B ^ b ) ) -> ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ ( b + 1 ) ) < ( B ^ ( b + 1 ) ) ) ) ) |
| 47 | 4 8 12 16 24 46 | nnind | |- ( N e. NN -> ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ N ) < ( B ^ N ) ) ) |
| 48 | 47 | impcom | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ N e. NN ) -> ( A ^ N ) < ( B ^ N ) ) |
| 49 | 48 | 3impa | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) /\ N e. NN ) -> ( A ^ N ) < ( B ^ N ) ) |