This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base ordering relationship for exponentiation of positive reals to a fixed positive integer exponent. (Contributed by Stefan O'Rear, 16-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpexpmord | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 ↑ 𝑁 ) = ( 𝑏 ↑ 𝑁 ) ) | |
| 2 | oveq1 | ⊢ ( 𝑎 = 𝐴 → ( 𝑎 ↑ 𝑁 ) = ( 𝐴 ↑ 𝑁 ) ) | |
| 3 | oveq1 | ⊢ ( 𝑎 = 𝐵 → ( 𝑎 ↑ 𝑁 ) = ( 𝐵 ↑ 𝑁 ) ) | |
| 4 | rpssre | ⊢ ℝ+ ⊆ ℝ | |
| 5 | rpre | ⊢ ( 𝑎 ∈ ℝ+ → 𝑎 ∈ ℝ ) | |
| 6 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 7 | reexpcl | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑎 ↑ 𝑁 ) ∈ ℝ ) | |
| 8 | 5 6 7 | syl2anr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑎 ∈ ℝ+ ) → ( 𝑎 ↑ 𝑁 ) ∈ ℝ ) |
| 9 | simplrl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ) ∧ 𝑎 < 𝑏 ) → 𝑎 ∈ ℝ+ ) | |
| 10 | 9 | rpred | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ) ∧ 𝑎 < 𝑏 ) → 𝑎 ∈ ℝ ) |
| 11 | simplrr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ) ∧ 𝑎 < 𝑏 ) → 𝑏 ∈ ℝ+ ) | |
| 12 | 11 | rpred | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ) ∧ 𝑎 < 𝑏 ) → 𝑏 ∈ ℝ ) |
| 13 | 9 | rpge0d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ) ∧ 𝑎 < 𝑏 ) → 0 ≤ 𝑎 ) |
| 14 | simpr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ) ∧ 𝑎 < 𝑏 ) → 𝑎 < 𝑏 ) | |
| 15 | simpll | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ) ∧ 𝑎 < 𝑏 ) → 𝑁 ∈ ℕ ) | |
| 16 | expmordi | ⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 0 ≤ 𝑎 ∧ 𝑎 < 𝑏 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑎 ↑ 𝑁 ) < ( 𝑏 ↑ 𝑁 ) ) | |
| 17 | 10 12 13 14 15 16 | syl221anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ) ∧ 𝑎 < 𝑏 ) → ( 𝑎 ↑ 𝑁 ) < ( 𝑏 ↑ 𝑁 ) ) |
| 18 | 17 | ex | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ) → ( 𝑎 < 𝑏 → ( 𝑎 ↑ 𝑁 ) < ( 𝑏 ↑ 𝑁 ) ) ) |
| 19 | 1 2 3 4 8 18 | ltord1 | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) ) |
| 20 | 19 | 3impb | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) ) |