This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real greater than or equal to 1 raised to a nonnegative integer is greater than or equal to 1. (Contributed by NM, 21-Feb-2005) (Revised by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expge1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴 ) → 1 ≤ ( 𝐴 ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | ⊢ ( 𝑧 = 𝐴 → ( 1 ≤ 𝑧 ↔ 1 ≤ 𝐴 ) ) | |
| 2 | 1 | elrab | ⊢ ( 𝐴 ∈ { 𝑧 ∈ ℝ ∣ 1 ≤ 𝑧 } ↔ ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ) |
| 3 | ssrab2 | ⊢ { 𝑧 ∈ ℝ ∣ 1 ≤ 𝑧 } ⊆ ℝ | |
| 4 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 5 | 3 4 | sstri | ⊢ { 𝑧 ∈ ℝ ∣ 1 ≤ 𝑧 } ⊆ ℂ |
| 6 | breq2 | ⊢ ( 𝑧 = 𝑥 → ( 1 ≤ 𝑧 ↔ 1 ≤ 𝑥 ) ) | |
| 7 | 6 | elrab | ⊢ ( 𝑥 ∈ { 𝑧 ∈ ℝ ∣ 1 ≤ 𝑧 } ↔ ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ) |
| 8 | breq2 | ⊢ ( 𝑧 = 𝑦 → ( 1 ≤ 𝑧 ↔ 1 ≤ 𝑦 ) ) | |
| 9 | 8 | elrab | ⊢ ( 𝑦 ∈ { 𝑧 ∈ ℝ ∣ 1 ≤ 𝑧 } ↔ ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ) |
| 10 | breq2 | ⊢ ( 𝑧 = ( 𝑥 · 𝑦 ) → ( 1 ≤ 𝑧 ↔ 1 ≤ ( 𝑥 · 𝑦 ) ) ) | |
| 11 | remulcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) | |
| 12 | 11 | ad2ant2r | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
| 13 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
| 14 | 1re | ⊢ 1 ∈ ℝ | |
| 15 | 0le1 | ⊢ 0 ≤ 1 | |
| 16 | 14 15 | pm3.2i | ⊢ ( 1 ∈ ℝ ∧ 0 ≤ 1 ) |
| 17 | 16 | jctl | ⊢ ( 𝑥 ∈ ℝ → ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ 𝑥 ∈ ℝ ) ) |
| 18 | 16 | jctl | ⊢ ( 𝑦 ∈ ℝ → ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ 𝑦 ∈ ℝ ) ) |
| 19 | lemul12a | ⊢ ( ( ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ 𝑦 ∈ ℝ ) ) → ( ( 1 ≤ 𝑥 ∧ 1 ≤ 𝑦 ) → ( 1 · 1 ) ≤ ( 𝑥 · 𝑦 ) ) ) | |
| 20 | 17 18 19 | syl2an | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 1 ≤ 𝑥 ∧ 1 ≤ 𝑦 ) → ( 1 · 1 ) ≤ ( 𝑥 · 𝑦 ) ) ) |
| 21 | 20 | imp | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 1 ≤ 𝑥 ∧ 1 ≤ 𝑦 ) ) → ( 1 · 1 ) ≤ ( 𝑥 · 𝑦 ) ) |
| 22 | 13 21 | eqbrtrrid | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 1 ≤ 𝑥 ∧ 1 ≤ 𝑦 ) ) → 1 ≤ ( 𝑥 · 𝑦 ) ) |
| 23 | 22 | an4s | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ) → 1 ≤ ( 𝑥 · 𝑦 ) ) |
| 24 | 10 12 23 | elrabd | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ) → ( 𝑥 · 𝑦 ) ∈ { 𝑧 ∈ ℝ ∣ 1 ≤ 𝑧 } ) |
| 25 | 7 9 24 | syl2anb | ⊢ ( ( 𝑥 ∈ { 𝑧 ∈ ℝ ∣ 1 ≤ 𝑧 } ∧ 𝑦 ∈ { 𝑧 ∈ ℝ ∣ 1 ≤ 𝑧 } ) → ( 𝑥 · 𝑦 ) ∈ { 𝑧 ∈ ℝ ∣ 1 ≤ 𝑧 } ) |
| 26 | 1le1 | ⊢ 1 ≤ 1 | |
| 27 | breq2 | ⊢ ( 𝑧 = 1 → ( 1 ≤ 𝑧 ↔ 1 ≤ 1 ) ) | |
| 28 | 27 | elrab | ⊢ ( 1 ∈ { 𝑧 ∈ ℝ ∣ 1 ≤ 𝑧 } ↔ ( 1 ∈ ℝ ∧ 1 ≤ 1 ) ) |
| 29 | 14 26 28 | mpbir2an | ⊢ 1 ∈ { 𝑧 ∈ ℝ ∣ 1 ≤ 𝑧 } |
| 30 | 5 25 29 | expcllem | ⊢ ( ( 𝐴 ∈ { 𝑧 ∈ ℝ ∣ 1 ≤ 𝑧 } ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ { 𝑧 ∈ ℝ ∣ 1 ≤ 𝑧 } ) |
| 31 | 2 30 | sylanbr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ { 𝑧 ∈ ℝ ∣ 1 ≤ 𝑧 } ) |
| 32 | 31 | 3impa | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ { 𝑧 ∈ ℝ ∣ 1 ≤ 𝑧 } ) |
| 33 | 32 | 3com23 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴 ) → ( 𝐴 ↑ 𝑁 ) ∈ { 𝑧 ∈ ℝ ∣ 1 ≤ 𝑧 } ) |
| 34 | breq2 | ⊢ ( 𝑧 = ( 𝐴 ↑ 𝑁 ) → ( 1 ≤ 𝑧 ↔ 1 ≤ ( 𝐴 ↑ 𝑁 ) ) ) | |
| 35 | 34 | elrab | ⊢ ( ( 𝐴 ↑ 𝑁 ) ∈ { 𝑧 ∈ ℝ ∣ 1 ≤ 𝑧 } ↔ ( ( 𝐴 ↑ 𝑁 ) ∈ ℝ ∧ 1 ≤ ( 𝐴 ↑ 𝑁 ) ) ) |
| 36 | 35 | simprbi | ⊢ ( ( 𝐴 ↑ 𝑁 ) ∈ { 𝑧 ∈ ℝ ∣ 1 ≤ 𝑧 } → 1 ≤ ( 𝐴 ↑ 𝑁 ) ) |
| 37 | 33 36 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴 ) → 1 ≤ ( 𝐴 ↑ 𝑁 ) ) |