This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The power function on complex numbers, for fixed exponent N , is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 23-Aug-2014) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | expcn.j | |- J = ( TopOpen ` CCfld ) |
|
| Assertion | expcn | |- ( N e. NN0 -> ( x e. CC |-> ( x ^ N ) ) e. ( J Cn J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcn.j | |- J = ( TopOpen ` CCfld ) |
|
| 2 | oveq2 | |- ( n = 0 -> ( x ^ n ) = ( x ^ 0 ) ) |
|
| 3 | 2 | mpteq2dv | |- ( n = 0 -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ 0 ) ) ) |
| 4 | 3 | eleq1d | |- ( n = 0 -> ( ( x e. CC |-> ( x ^ n ) ) e. ( J Cn J ) <-> ( x e. CC |-> ( x ^ 0 ) ) e. ( J Cn J ) ) ) |
| 5 | oveq2 | |- ( n = k -> ( x ^ n ) = ( x ^ k ) ) |
|
| 6 | 5 | mpteq2dv | |- ( n = k -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ k ) ) ) |
| 7 | 6 | eleq1d | |- ( n = k -> ( ( x e. CC |-> ( x ^ n ) ) e. ( J Cn J ) <-> ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) ) |
| 8 | oveq2 | |- ( n = ( k + 1 ) -> ( x ^ n ) = ( x ^ ( k + 1 ) ) ) |
|
| 9 | 8 | mpteq2dv | |- ( n = ( k + 1 ) -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) |
| 10 | 9 | eleq1d | |- ( n = ( k + 1 ) -> ( ( x e. CC |-> ( x ^ n ) ) e. ( J Cn J ) <-> ( x e. CC |-> ( x ^ ( k + 1 ) ) ) e. ( J Cn J ) ) ) |
| 11 | oveq2 | |- ( n = N -> ( x ^ n ) = ( x ^ N ) ) |
|
| 12 | 11 | mpteq2dv | |- ( n = N -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ N ) ) ) |
| 13 | 12 | eleq1d | |- ( n = N -> ( ( x e. CC |-> ( x ^ n ) ) e. ( J Cn J ) <-> ( x e. CC |-> ( x ^ N ) ) e. ( J Cn J ) ) ) |
| 14 | exp0 | |- ( x e. CC -> ( x ^ 0 ) = 1 ) |
|
| 15 | 14 | mpteq2ia | |- ( x e. CC |-> ( x ^ 0 ) ) = ( x e. CC |-> 1 ) |
| 16 | 1 | cnfldtopon | |- J e. ( TopOn ` CC ) |
| 17 | 16 | a1i | |- ( T. -> J e. ( TopOn ` CC ) ) |
| 18 | 1cnd | |- ( T. -> 1 e. CC ) |
|
| 19 | 17 17 18 | cnmptc | |- ( T. -> ( x e. CC |-> 1 ) e. ( J Cn J ) ) |
| 20 | 19 | mptru | |- ( x e. CC |-> 1 ) e. ( J Cn J ) |
| 21 | 15 20 | eqeltri | |- ( x e. CC |-> ( x ^ 0 ) ) e. ( J Cn J ) |
| 22 | oveq1 | |- ( x = n -> ( x ^ ( k + 1 ) ) = ( n ^ ( k + 1 ) ) ) |
|
| 23 | 22 | cbvmptv | |- ( x e. CC |-> ( x ^ ( k + 1 ) ) ) = ( n e. CC |-> ( n ^ ( k + 1 ) ) ) |
| 24 | id | |- ( n e. CC -> n e. CC ) |
|
| 25 | simpl | |- ( ( k e. NN0 /\ ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) -> k e. NN0 ) |
|
| 26 | expp1 | |- ( ( n e. CC /\ k e. NN0 ) -> ( n ^ ( k + 1 ) ) = ( ( n ^ k ) x. n ) ) |
|
| 27 | expcl | |- ( ( n e. CC /\ k e. NN0 ) -> ( n ^ k ) e. CC ) |
|
| 28 | simpl | |- ( ( n e. CC /\ k e. NN0 ) -> n e. CC ) |
|
| 29 | ovmpot | |- ( ( ( n ^ k ) e. CC /\ n e. CC ) -> ( ( n ^ k ) ( u e. CC , v e. CC |-> ( u x. v ) ) n ) = ( ( n ^ k ) x. n ) ) |
|
| 30 | 27 28 29 | syl2anc | |- ( ( n e. CC /\ k e. NN0 ) -> ( ( n ^ k ) ( u e. CC , v e. CC |-> ( u x. v ) ) n ) = ( ( n ^ k ) x. n ) ) |
| 31 | 26 30 | eqtr4d | |- ( ( n e. CC /\ k e. NN0 ) -> ( n ^ ( k + 1 ) ) = ( ( n ^ k ) ( u e. CC , v e. CC |-> ( u x. v ) ) n ) ) |
| 32 | 24 25 31 | syl2anr | |- ( ( ( k e. NN0 /\ ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) /\ n e. CC ) -> ( n ^ ( k + 1 ) ) = ( ( n ^ k ) ( u e. CC , v e. CC |-> ( u x. v ) ) n ) ) |
| 33 | 32 | mpteq2dva | |- ( ( k e. NN0 /\ ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) -> ( n e. CC |-> ( n ^ ( k + 1 ) ) ) = ( n e. CC |-> ( ( n ^ k ) ( u e. CC , v e. CC |-> ( u x. v ) ) n ) ) ) |
| 34 | 23 33 | eqtrid | |- ( ( k e. NN0 /\ ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) -> ( x e. CC |-> ( x ^ ( k + 1 ) ) ) = ( n e. CC |-> ( ( n ^ k ) ( u e. CC , v e. CC |-> ( u x. v ) ) n ) ) ) |
| 35 | 16 | a1i | |- ( ( k e. NN0 /\ ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) -> J e. ( TopOn ` CC ) ) |
| 36 | oveq1 | |- ( x = n -> ( x ^ k ) = ( n ^ k ) ) |
|
| 37 | 36 | cbvmptv | |- ( x e. CC |-> ( x ^ k ) ) = ( n e. CC |-> ( n ^ k ) ) |
| 38 | simpr | |- ( ( k e. NN0 /\ ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) -> ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) |
|
| 39 | 37 38 | eqeltrrid | |- ( ( k e. NN0 /\ ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) -> ( n e. CC |-> ( n ^ k ) ) e. ( J Cn J ) ) |
| 40 | 35 | cnmptid | |- ( ( k e. NN0 /\ ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) -> ( n e. CC |-> n ) e. ( J Cn J ) ) |
| 41 | 1 | mpomulcn | |- ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( J tX J ) Cn J ) |
| 42 | 41 | a1i | |- ( ( k e. NN0 /\ ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( J tX J ) Cn J ) ) |
| 43 | 35 39 40 42 | cnmpt12f | |- ( ( k e. NN0 /\ ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) -> ( n e. CC |-> ( ( n ^ k ) ( u e. CC , v e. CC |-> ( u x. v ) ) n ) ) e. ( J Cn J ) ) |
| 44 | 34 43 | eqeltrd | |- ( ( k e. NN0 /\ ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) -> ( x e. CC |-> ( x ^ ( k + 1 ) ) ) e. ( J Cn J ) ) |
| 45 | 44 | ex | |- ( k e. NN0 -> ( ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) -> ( x e. CC |-> ( x ^ ( k + 1 ) ) ) e. ( J Cn J ) ) ) |
| 46 | 4 7 10 13 21 45 | nn0ind | |- ( N e. NN0 -> ( x e. CC |-> ( x ^ N ) ) e. ( J Cn J ) ) |