This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example of a valuation of a simplified satisfaction predicate over a proper pair (of ordinal numbers) as model for a Godel-set of membership using the properties of a successor: ( S2o ) = 1o e. 2o = ( S2o ) . Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: ( 2o e.g 1o ) should not be confused with 2o e. 1o , which is false. (Contributed by AV, 19-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ex-sategoelel12.s | |- S = ( x e. _om |-> if ( x = 2o , 1o , 2o ) ) |
|
| Assertion | ex-sategoelel12 | |- S e. ( { 1o , 2o } SatE ( 2o e.g 1o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ex-sategoelel12.s | |- S = ( x e. _om |-> if ( x = 2o , 1o , 2o ) ) |
|
| 2 | 1oex | |- 1o e. _V |
|
| 3 | 2 | prid1 | |- 1o e. { 1o , 2o } |
| 4 | 2oex | |- 2o e. _V |
|
| 5 | 4 | prid2 | |- 2o e. { 1o , 2o } |
| 6 | 3 5 | ifcli | |- if ( x = 2o , 1o , 2o ) e. { 1o , 2o } |
| 7 | 6 | a1i | |- ( x e. _om -> if ( x = 2o , 1o , 2o ) e. { 1o , 2o } ) |
| 8 | 1 7 | fmpti | |- S : _om --> { 1o , 2o } |
| 9 | prex | |- { 1o , 2o } e. _V |
|
| 10 | omex | |- _om e. _V |
|
| 11 | 9 10 | elmap | |- ( S e. ( { 1o , 2o } ^m _om ) <-> S : _om --> { 1o , 2o } ) |
| 12 | 8 11 | mpbir | |- S e. ( { 1o , 2o } ^m _om ) |
| 13 | 2 | sucid | |- 1o e. suc 1o |
| 14 | df-2o | |- 2o = suc 1o |
|
| 15 | 13 14 | eleqtrri | |- 1o e. 2o |
| 16 | 2onn | |- 2o e. _om |
|
| 17 | 1onn | |- 1o e. _om |
|
| 18 | iftrue | |- ( x = 2o -> if ( x = 2o , 1o , 2o ) = 1o ) |
|
| 19 | 18 1 | fvmptg | |- ( ( 2o e. _om /\ 1o e. _om ) -> ( S ` 2o ) = 1o ) |
| 20 | 16 17 19 | mp2an | |- ( S ` 2o ) = 1o |
| 21 | 1one2o | |- 1o =/= 2o |
|
| 22 | 21 | neii | |- -. 1o = 2o |
| 23 | eqeq1 | |- ( x = 1o -> ( x = 2o <-> 1o = 2o ) ) |
|
| 24 | 22 23 | mtbiri | |- ( x = 1o -> -. x = 2o ) |
| 25 | 24 | iffalsed | |- ( x = 1o -> if ( x = 2o , 1o , 2o ) = 2o ) |
| 26 | 25 1 | fvmptg | |- ( ( 1o e. _om /\ 2o e. _om ) -> ( S ` 1o ) = 2o ) |
| 27 | 17 16 26 | mp2an | |- ( S ` 1o ) = 2o |
| 28 | 15 20 27 | 3eltr4i | |- ( S ` 2o ) e. ( S ` 1o ) |
| 29 | 12 28 | pm3.2i | |- ( S e. ( { 1o , 2o } ^m _om ) /\ ( S ` 2o ) e. ( S ` 1o ) ) |
| 30 | 16 17 | pm3.2i | |- ( 2o e. _om /\ 1o e. _om ) |
| 31 | eqid | |- ( { 1o , 2o } SatE ( 2o e.g 1o ) ) = ( { 1o , 2o } SatE ( 2o e.g 1o ) ) |
|
| 32 | 31 | sategoelfvb | |- ( ( { 1o , 2o } e. _V /\ ( 2o e. _om /\ 1o e. _om ) ) -> ( S e. ( { 1o , 2o } SatE ( 2o e.g 1o ) ) <-> ( S e. ( { 1o , 2o } ^m _om ) /\ ( S ` 2o ) e. ( S ` 1o ) ) ) ) |
| 33 | 9 30 32 | mp2an | |- ( S e. ( { 1o , 2o } SatE ( 2o e.g 1o ) ) <-> ( S e. ( { 1o , 2o } ^m _om ) /\ ( S ` 2o ) e. ( S ` 1o ) ) ) |
| 34 | 29 33 | mpbir | |- S e. ( { 1o , 2o } SatE ( 2o e.g 1o ) ) |