This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example for df-dif . Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ex-dif | ⊢ ( { 1 , 3 } ∖ { 1 , 8 } ) = { 3 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr | ⊢ { 1 , 3 } = ( { 1 } ∪ { 3 } ) | |
| 2 | 1 | difeq1i | ⊢ ( { 1 , 3 } ∖ { 1 , 8 } ) = ( ( { 1 } ∪ { 3 } ) ∖ { 1 , 8 } ) |
| 3 | difundir | ⊢ ( ( { 1 } ∪ { 3 } ) ∖ { 1 , 8 } ) = ( ( { 1 } ∖ { 1 , 8 } ) ∪ ( { 3 } ∖ { 1 , 8 } ) ) | |
| 4 | snsspr1 | ⊢ { 1 } ⊆ { 1 , 8 } | |
| 5 | ssdif0 | ⊢ ( { 1 } ⊆ { 1 , 8 } ↔ ( { 1 } ∖ { 1 , 8 } ) = ∅ ) | |
| 6 | 4 5 | mpbi | ⊢ ( { 1 } ∖ { 1 , 8 } ) = ∅ |
| 7 | incom | ⊢ ( { 3 } ∩ { 1 , 8 } ) = ( { 1 , 8 } ∩ { 3 } ) | |
| 8 | 1re | ⊢ 1 ∈ ℝ | |
| 9 | 1lt3 | ⊢ 1 < 3 | |
| 10 | 8 9 | gtneii | ⊢ 3 ≠ 1 |
| 11 | 3re | ⊢ 3 ∈ ℝ | |
| 12 | 3lt8 | ⊢ 3 < 8 | |
| 13 | 11 12 | ltneii | ⊢ 3 ≠ 8 |
| 14 | 10 13 | nelpri | ⊢ ¬ 3 ∈ { 1 , 8 } |
| 15 | disjsn | ⊢ ( ( { 1 , 8 } ∩ { 3 } ) = ∅ ↔ ¬ 3 ∈ { 1 , 8 } ) | |
| 16 | 14 15 | mpbir | ⊢ ( { 1 , 8 } ∩ { 3 } ) = ∅ |
| 17 | 7 16 | eqtri | ⊢ ( { 3 } ∩ { 1 , 8 } ) = ∅ |
| 18 | disj3 | ⊢ ( ( { 3 } ∩ { 1 , 8 } ) = ∅ ↔ { 3 } = ( { 3 } ∖ { 1 , 8 } ) ) | |
| 19 | 17 18 | mpbi | ⊢ { 3 } = ( { 3 } ∖ { 1 , 8 } ) |
| 20 | 19 | eqcomi | ⊢ ( { 3 } ∖ { 1 , 8 } ) = { 3 } |
| 21 | 6 20 | uneq12i | ⊢ ( ( { 1 } ∖ { 1 , 8 } ) ∪ ( { 3 } ∖ { 1 , 8 } ) ) = ( ∅ ∪ { 3 } ) |
| 22 | uncom | ⊢ ( ∅ ∪ { 3 } ) = ( { 3 } ∪ ∅ ) | |
| 23 | un0 | ⊢ ( { 3 } ∪ ∅ ) = { 3 } | |
| 24 | 21 22 23 | 3eqtri | ⊢ ( ( { 1 } ∖ { 1 , 8 } ) ∪ ( { 3 } ∖ { 1 , 8 } ) ) = { 3 } |
| 25 | 2 3 24 | 3eqtri | ⊢ ( { 1 , 3 } ∖ { 1 , 8 } ) = { 3 } |