This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example for df-dif . Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ex-dif | |- ( { 1 , 3 } \ { 1 , 8 } ) = { 3 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr | |- { 1 , 3 } = ( { 1 } u. { 3 } ) |
|
| 2 | 1 | difeq1i | |- ( { 1 , 3 } \ { 1 , 8 } ) = ( ( { 1 } u. { 3 } ) \ { 1 , 8 } ) |
| 3 | difundir | |- ( ( { 1 } u. { 3 } ) \ { 1 , 8 } ) = ( ( { 1 } \ { 1 , 8 } ) u. ( { 3 } \ { 1 , 8 } ) ) |
|
| 4 | snsspr1 | |- { 1 } C_ { 1 , 8 } |
|
| 5 | ssdif0 | |- ( { 1 } C_ { 1 , 8 } <-> ( { 1 } \ { 1 , 8 } ) = (/) ) |
|
| 6 | 4 5 | mpbi | |- ( { 1 } \ { 1 , 8 } ) = (/) |
| 7 | incom | |- ( { 3 } i^i { 1 , 8 } ) = ( { 1 , 8 } i^i { 3 } ) |
|
| 8 | 1re | |- 1 e. RR |
|
| 9 | 1lt3 | |- 1 < 3 |
|
| 10 | 8 9 | gtneii | |- 3 =/= 1 |
| 11 | 3re | |- 3 e. RR |
|
| 12 | 3lt8 | |- 3 < 8 |
|
| 13 | 11 12 | ltneii | |- 3 =/= 8 |
| 14 | 10 13 | nelpri | |- -. 3 e. { 1 , 8 } |
| 15 | disjsn | |- ( ( { 1 , 8 } i^i { 3 } ) = (/) <-> -. 3 e. { 1 , 8 } ) |
|
| 16 | 14 15 | mpbir | |- ( { 1 , 8 } i^i { 3 } ) = (/) |
| 17 | 7 16 | eqtri | |- ( { 3 } i^i { 1 , 8 } ) = (/) |
| 18 | disj3 | |- ( ( { 3 } i^i { 1 , 8 } ) = (/) <-> { 3 } = ( { 3 } \ { 1 , 8 } ) ) |
|
| 19 | 17 18 | mpbi | |- { 3 } = ( { 3 } \ { 1 , 8 } ) |
| 20 | 19 | eqcomi | |- ( { 3 } \ { 1 , 8 } ) = { 3 } |
| 21 | 6 20 | uneq12i | |- ( ( { 1 } \ { 1 , 8 } ) u. ( { 3 } \ { 1 , 8 } ) ) = ( (/) u. { 3 } ) |
| 22 | uncom | |- ( (/) u. { 3 } ) = ( { 3 } u. (/) ) |
|
| 23 | un0 | |- ( { 3 } u. (/) ) = { 3 } |
|
| 24 | 21 22 23 | 3eqtri | |- ( ( { 1 } \ { 1 , 8 } ) u. ( { 3 } \ { 1 , 8 } ) ) = { 3 } |
| 25 | 2 3 24 | 3eqtri | |- ( { 1 , 3 } \ { 1 , 8 } ) = { 3 } |