This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An s-walk of edges is also a t-walk of edges if t <_ s . (Contributed by AV, 4-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ewlkle | ⊢ ( ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) ∧ 𝑇 ∈ ℕ0* ∧ 𝑇 ≤ 𝑆 ) → 𝐹 ∈ ( 𝐺 EdgWalks 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 2 | 1 | ewlkprop | ⊢ ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) → ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 3 | simpl2 | ⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ∧ ( 𝑇 ∈ ℕ0* ∧ 𝑇 ≤ 𝑆 ) ) → 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) | |
| 4 | xnn0xr | ⊢ ( 𝑇 ∈ ℕ0* → 𝑇 ∈ ℝ* ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝑆 ∈ ℕ0* ∧ 𝑇 ∈ ℕ0* ) → 𝑇 ∈ ℝ* ) |
| 6 | xnn0xr | ⊢ ( 𝑆 ∈ ℕ0* → 𝑆 ∈ ℝ* ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝑆 ∈ ℕ0* ∧ 𝑇 ∈ ℕ0* ) → 𝑆 ∈ ℝ* ) |
| 8 | fvex | ⊢ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∈ V | |
| 9 | 8 | inex1 | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∈ V |
| 10 | hashxrcl | ⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∈ V → ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ∈ ℝ* ) | |
| 11 | 9 10 | mp1i | ⊢ ( ( 𝑆 ∈ ℕ0* ∧ 𝑇 ∈ ℕ0* ) → ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ∈ ℝ* ) |
| 12 | xrletr | ⊢ ( ( 𝑇 ∈ ℝ* ∧ 𝑆 ∈ ℝ* ∧ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ∈ ℝ* ) → ( ( 𝑇 ≤ 𝑆 ∧ 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) → 𝑇 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) | |
| 13 | 5 7 11 12 | syl3anc | ⊢ ( ( 𝑆 ∈ ℕ0* ∧ 𝑇 ∈ ℕ0* ) → ( ( 𝑇 ≤ 𝑆 ∧ 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) → 𝑇 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 14 | 13 | exp4b | ⊢ ( 𝑆 ∈ ℕ0* → ( 𝑇 ∈ ℕ0* → ( 𝑇 ≤ 𝑆 → ( 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → 𝑇 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) → ( 𝑇 ∈ ℕ0* → ( 𝑇 ≤ 𝑆 → ( 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → 𝑇 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) ) |
| 16 | 15 | imp32 | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ ( 𝑇 ∈ ℕ0* ∧ 𝑇 ≤ 𝑆 ) ) → ( 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → 𝑇 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 17 | 16 | ralimdv | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ ( 𝑇 ∈ ℕ0* ∧ 𝑇 ≤ 𝑆 ) ) → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑇 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 18 | 17 | ex | ⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) → ( ( 𝑇 ∈ ℕ0* ∧ 𝑇 ≤ 𝑆 ) → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑇 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) |
| 19 | 18 | com23 | ⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝑇 ∈ ℕ0* ∧ 𝑇 ≤ 𝑆 ) → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑇 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) |
| 20 | 19 | a1d | ⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) → ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝑇 ∈ ℕ0* ∧ 𝑇 ≤ 𝑆 ) → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑇 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) ) |
| 21 | 20 | 3imp1 | ⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ∧ ( 𝑇 ∈ ℕ0* ∧ 𝑇 ≤ 𝑆 ) ) → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑇 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 22 | simpl1l | ⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ∧ ( 𝑇 ∈ ℕ0* ∧ 𝑇 ≤ 𝑆 ) ) → 𝐺 ∈ V ) | |
| 23 | simprl | ⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ∧ ( 𝑇 ∈ ℕ0* ∧ 𝑇 ≤ 𝑆 ) ) → 𝑇 ∈ ℕ0* ) | |
| 24 | 1 | isewlk | ⊢ ( ( 𝐺 ∈ V ∧ 𝑇 ∈ ℕ0* ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑇 ) ↔ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑇 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) |
| 25 | 22 23 3 24 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ∧ ( 𝑇 ∈ ℕ0* ∧ 𝑇 ≤ 𝑆 ) ) → ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑇 ) ↔ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑇 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) |
| 26 | 3 21 25 | mpbir2and | ⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ∧ ( 𝑇 ∈ ℕ0* ∧ 𝑇 ≤ 𝑆 ) ) → 𝐹 ∈ ( 𝐺 EdgWalks 𝑇 ) ) |
| 27 | 26 | ex | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) → ( ( 𝑇 ∈ ℕ0* ∧ 𝑇 ≤ 𝑆 ) → 𝐹 ∈ ( 𝐺 EdgWalks 𝑇 ) ) ) |
| 28 | 2 27 | syl | ⊢ ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) → ( ( 𝑇 ∈ ℕ0* ∧ 𝑇 ≤ 𝑆 ) → 𝐹 ∈ ( 𝐺 EdgWalks 𝑇 ) ) ) |
| 29 | 28 | 3impib | ⊢ ( ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) ∧ 𝑇 ∈ ℕ0* ∧ 𝑇 ≤ 𝑆 ) → 𝐹 ∈ ( 𝐺 EdgWalks 𝑇 ) ) |