This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extreme Value Theorem on y closed interval, for the absolute value of y continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evthiccabs.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| evthiccabs.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| evthiccabs.aleb | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| evthiccabs.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | ||
| Assertion | evthiccabs | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evthiccabs.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | evthiccabs.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | evthiccabs.aleb | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 4 | evthiccabs.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | |
| 5 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 6 | ssid | ⊢ ℂ ⊆ ℂ | |
| 7 | cncfss | ⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | |
| 8 | 5 6 7 | mp2an | ⊢ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
| 9 | 8 4 | sselid | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 10 | abscncf | ⊢ abs ∈ ( ℂ –cn→ ℝ ) | |
| 11 | 10 | a1i | ⊢ ( 𝜑 → abs ∈ ( ℂ –cn→ ℝ ) ) |
| 12 | 9 11 | cncfco | ⊢ ( 𝜑 → ( abs ∘ 𝐹 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 13 | 1 2 3 12 | evthicc | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ∧ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑤 ) ) ) |
| 14 | 13 | simpld | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ) |
| 15 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | |
| 16 | ffun | ⊢ ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ → Fun 𝐹 ) | |
| 17 | 4 15 16 | 3syl | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → Fun 𝐹 ) |
| 19 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 20 | fdm | ⊢ ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ → dom 𝐹 = ( 𝐴 [,] 𝐵 ) ) | |
| 21 | 4 15 20 | 3syl | ⊢ ( 𝜑 → dom 𝐹 = ( 𝐴 [,] 𝐵 ) ) |
| 22 | 21 | eqcomd | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) = dom 𝐹 ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) = dom 𝐹 ) |
| 24 | 19 23 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ dom 𝐹 ) |
| 25 | fvco | ⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 26 | 18 24 25 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 27 | 26 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 28 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → Fun 𝐹 ) |
| 29 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 30 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) = dom 𝐹 ) |
| 31 | 29 30 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ dom 𝐹 ) |
| 32 | fvco | ⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) = ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 33 | 28 31 32 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) = ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) = ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 35 | 27 34 | breq12d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ↔ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 36 | 35 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 37 | 36 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 38 | 14 37 | mpbid | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 39 | 13 | simprd | ⊢ ( 𝜑 → ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑤 ) ) |
| 40 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → Fun 𝐹 ) |
| 41 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 42 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) = dom 𝐹 ) |
| 43 | 41 42 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑧 ∈ dom 𝐹 ) |
| 44 | fvco | ⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ dom 𝐹 ) → ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) = ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) | |
| 45 | 40 43 44 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) = ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 46 | 45 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) = ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 47 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → Fun 𝐹 ) |
| 48 | simpr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 49 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) = dom 𝐹 ) |
| 50 | 48 49 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑤 ∈ dom 𝐹 ) |
| 51 | fvco | ⊢ ( ( Fun 𝐹 ∧ 𝑤 ∈ dom 𝐹 ) → ( ( abs ∘ 𝐹 ) ‘ 𝑤 ) = ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) | |
| 52 | 47 50 51 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑤 ) = ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) |
| 53 | 52 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑤 ) = ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) |
| 54 | 46 53 | breq12d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑤 ) ↔ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 55 | 54 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑤 ) ↔ ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 56 | 55 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑤 ) ↔ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 57 | 39 56 | mpbid | ⊢ ( 𝜑 → ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) |
| 58 | 38 57 | jca | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) |