This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real number smaller than the lower bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltnelicc.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ltnelicc.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | ||
| ltnelicc.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | ||
| ltnelicc.clta | ⊢ ( 𝜑 → 𝐶 < 𝐴 ) | ||
| Assertion | ltnelicc | ⊢ ( 𝜑 → ¬ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnelicc.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ltnelicc.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | |
| 3 | ltnelicc.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | |
| 4 | ltnelicc.clta | ⊢ ( 𝜑 → 𝐶 < 𝐴 ) | |
| 5 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 6 | xrltnle | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐶 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐶 ) ) | |
| 7 | 3 5 6 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐶 ) ) |
| 8 | 4 7 | mpbid | ⊢ ( 𝜑 → ¬ 𝐴 ≤ 𝐶 ) |
| 9 | 8 | intnanrd | ⊢ ( 𝜑 → ¬ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
| 10 | elicc4 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) | |
| 11 | 5 2 3 10 | syl3anc | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| 12 | 9 11 | mtbird | ⊢ ( 𝜑 → ¬ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |