This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extreme Value Theorem on y closed interval, for the absolute value of y continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evthiccabs.a | |- ( ph -> A e. RR ) |
|
| evthiccabs.b | |- ( ph -> B e. RR ) |
||
| evthiccabs.aleb | |- ( ph -> A <_ B ) |
||
| evthiccabs.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
||
| Assertion | evthiccabs | |- ( ph -> ( E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( F ` y ) ) <_ ( abs ` ( F ` x ) ) /\ E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( abs ` ( F ` z ) ) <_ ( abs ` ( F ` w ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evthiccabs.a | |- ( ph -> A e. RR ) |
|
| 2 | evthiccabs.b | |- ( ph -> B e. RR ) |
|
| 3 | evthiccabs.aleb | |- ( ph -> A <_ B ) |
|
| 4 | evthiccabs.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 5 | ax-resscn | |- RR C_ CC |
|
| 6 | ssid | |- CC C_ CC |
|
| 7 | cncfss | |- ( ( RR C_ CC /\ CC C_ CC ) -> ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC ) ) |
|
| 8 | 5 6 7 | mp2an | |- ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC ) |
| 9 | 8 4 | sselid | |- ( ph -> F e. ( ( A [,] B ) -cn-> CC ) ) |
| 10 | abscncf | |- abs e. ( CC -cn-> RR ) |
|
| 11 | 10 | a1i | |- ( ph -> abs e. ( CC -cn-> RR ) ) |
| 12 | 9 11 | cncfco | |- ( ph -> ( abs o. F ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 13 | 1 2 3 12 | evthicc | |- ( ph -> ( E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( ( abs o. F ) ` y ) <_ ( ( abs o. F ) ` x ) /\ E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( ( abs o. F ) ` z ) <_ ( ( abs o. F ) ` w ) ) ) |
| 14 | 13 | simpld | |- ( ph -> E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( ( abs o. F ) ` y ) <_ ( ( abs o. F ) ` x ) ) |
| 15 | cncff | |- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
|
| 16 | ffun | |- ( F : ( A [,] B ) --> RR -> Fun F ) |
|
| 17 | 4 15 16 | 3syl | |- ( ph -> Fun F ) |
| 18 | 17 | adantr | |- ( ( ph /\ y e. ( A [,] B ) ) -> Fun F ) |
| 19 | simpr | |- ( ( ph /\ y e. ( A [,] B ) ) -> y e. ( A [,] B ) ) |
|
| 20 | fdm | |- ( F : ( A [,] B ) --> RR -> dom F = ( A [,] B ) ) |
|
| 21 | 4 15 20 | 3syl | |- ( ph -> dom F = ( A [,] B ) ) |
| 22 | 21 | eqcomd | |- ( ph -> ( A [,] B ) = dom F ) |
| 23 | 22 | adantr | |- ( ( ph /\ y e. ( A [,] B ) ) -> ( A [,] B ) = dom F ) |
| 24 | 19 23 | eleqtrd | |- ( ( ph /\ y e. ( A [,] B ) ) -> y e. dom F ) |
| 25 | fvco | |- ( ( Fun F /\ y e. dom F ) -> ( ( abs o. F ) ` y ) = ( abs ` ( F ` y ) ) ) |
|
| 26 | 18 24 25 | syl2anc | |- ( ( ph /\ y e. ( A [,] B ) ) -> ( ( abs o. F ) ` y ) = ( abs ` ( F ` y ) ) ) |
| 27 | 26 | adantlr | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ y e. ( A [,] B ) ) -> ( ( abs o. F ) ` y ) = ( abs ` ( F ` y ) ) ) |
| 28 | 17 | adantr | |- ( ( ph /\ x e. ( A [,] B ) ) -> Fun F ) |
| 29 | simpr | |- ( ( ph /\ x e. ( A [,] B ) ) -> x e. ( A [,] B ) ) |
|
| 30 | 22 | adantr | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( A [,] B ) = dom F ) |
| 31 | 29 30 | eleqtrd | |- ( ( ph /\ x e. ( A [,] B ) ) -> x e. dom F ) |
| 32 | fvco | |- ( ( Fun F /\ x e. dom F ) -> ( ( abs o. F ) ` x ) = ( abs ` ( F ` x ) ) ) |
|
| 33 | 28 31 32 | syl2anc | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( ( abs o. F ) ` x ) = ( abs ` ( F ` x ) ) ) |
| 34 | 33 | adantr | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ y e. ( A [,] B ) ) -> ( ( abs o. F ) ` x ) = ( abs ` ( F ` x ) ) ) |
| 35 | 27 34 | breq12d | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ y e. ( A [,] B ) ) -> ( ( ( abs o. F ) ` y ) <_ ( ( abs o. F ) ` x ) <-> ( abs ` ( F ` y ) ) <_ ( abs ` ( F ` x ) ) ) ) |
| 36 | 35 | ralbidva | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( A. y e. ( A [,] B ) ( ( abs o. F ) ` y ) <_ ( ( abs o. F ) ` x ) <-> A. y e. ( A [,] B ) ( abs ` ( F ` y ) ) <_ ( abs ` ( F ` x ) ) ) ) |
| 37 | 36 | rexbidva | |- ( ph -> ( E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( ( abs o. F ) ` y ) <_ ( ( abs o. F ) ` x ) <-> E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( F ` y ) ) <_ ( abs ` ( F ` x ) ) ) ) |
| 38 | 14 37 | mpbid | |- ( ph -> E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( F ` y ) ) <_ ( abs ` ( F ` x ) ) ) |
| 39 | 13 | simprd | |- ( ph -> E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( ( abs o. F ) ` z ) <_ ( ( abs o. F ) ` w ) ) |
| 40 | 17 | adantr | |- ( ( ph /\ z e. ( A [,] B ) ) -> Fun F ) |
| 41 | simpr | |- ( ( ph /\ z e. ( A [,] B ) ) -> z e. ( A [,] B ) ) |
|
| 42 | 22 | adantr | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( A [,] B ) = dom F ) |
| 43 | 41 42 | eleqtrd | |- ( ( ph /\ z e. ( A [,] B ) ) -> z e. dom F ) |
| 44 | fvco | |- ( ( Fun F /\ z e. dom F ) -> ( ( abs o. F ) ` z ) = ( abs ` ( F ` z ) ) ) |
|
| 45 | 40 43 44 | syl2anc | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( abs o. F ) ` z ) = ( abs ` ( F ` z ) ) ) |
| 46 | 45 | adantr | |- ( ( ( ph /\ z e. ( A [,] B ) ) /\ w e. ( A [,] B ) ) -> ( ( abs o. F ) ` z ) = ( abs ` ( F ` z ) ) ) |
| 47 | 17 | adantr | |- ( ( ph /\ w e. ( A [,] B ) ) -> Fun F ) |
| 48 | simpr | |- ( ( ph /\ w e. ( A [,] B ) ) -> w e. ( A [,] B ) ) |
|
| 49 | 22 | adantr | |- ( ( ph /\ w e. ( A [,] B ) ) -> ( A [,] B ) = dom F ) |
| 50 | 48 49 | eleqtrd | |- ( ( ph /\ w e. ( A [,] B ) ) -> w e. dom F ) |
| 51 | fvco | |- ( ( Fun F /\ w e. dom F ) -> ( ( abs o. F ) ` w ) = ( abs ` ( F ` w ) ) ) |
|
| 52 | 47 50 51 | syl2anc | |- ( ( ph /\ w e. ( A [,] B ) ) -> ( ( abs o. F ) ` w ) = ( abs ` ( F ` w ) ) ) |
| 53 | 52 | adantlr | |- ( ( ( ph /\ z e. ( A [,] B ) ) /\ w e. ( A [,] B ) ) -> ( ( abs o. F ) ` w ) = ( abs ` ( F ` w ) ) ) |
| 54 | 46 53 | breq12d | |- ( ( ( ph /\ z e. ( A [,] B ) ) /\ w e. ( A [,] B ) ) -> ( ( ( abs o. F ) ` z ) <_ ( ( abs o. F ) ` w ) <-> ( abs ` ( F ` z ) ) <_ ( abs ` ( F ` w ) ) ) ) |
| 55 | 54 | ralbidva | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( A. w e. ( A [,] B ) ( ( abs o. F ) ` z ) <_ ( ( abs o. F ) ` w ) <-> A. w e. ( A [,] B ) ( abs ` ( F ` z ) ) <_ ( abs ` ( F ` w ) ) ) ) |
| 56 | 55 | rexbidva | |- ( ph -> ( E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( ( abs o. F ) ` z ) <_ ( ( abs o. F ) ` w ) <-> E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( abs ` ( F ` z ) ) <_ ( abs ` ( F ` w ) ) ) ) |
| 57 | 39 56 | mpbid | |- ( ph -> E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( abs ` ( F ` z ) ) <_ ( abs ` ( F ` w ) ) ) |
| 58 | 38 57 | jca | |- ( ph -> ( E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( F ` y ) ) <_ ( abs ` ( F ` x ) ) /\ E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( abs ` ( F ` z ) ) <_ ( abs ` ( F ` w ) ) ) ) |