This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for a variable. (Contributed by SN, 27-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsvarval.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| evlsvarval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) | ||
| evlsvarval.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑈 ) | ||
| evlsvarval.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evlsvarval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| evlsvarval.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| evlsvarval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| evlsvarval.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlsvarval.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evlsvarval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | ||
| evlsvarval.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | ||
| Assertion | evlsvarval | ⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑉 ‘ 𝑋 ) ) ‘ 𝐴 ) = ( 𝐴 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsvarval.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 2 | evlsvarval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) | |
| 3 | evlsvarval.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑈 ) | |
| 4 | evlsvarval.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 5 | evlsvarval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 6 | evlsvarval.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 7 | evlsvarval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 8 | evlsvarval.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 9 | evlsvarval.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 10 | evlsvarval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | |
| 11 | evlsvarval.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | |
| 12 | 4 | subrgring | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
| 13 | 9 12 | syl | ⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
| 14 | 2 3 6 7 13 10 | mvrcl | ⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) ∈ 𝐵 ) |
| 15 | fveq1 | ⊢ ( 𝑔 = 𝐴 → ( 𝑔 ‘ 𝑋 ) = ( 𝐴 ‘ 𝑋 ) ) | |
| 16 | 1 3 4 5 7 8 9 10 | evlsvar | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑉 ‘ 𝑋 ) ) = ( 𝑔 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑋 ) ) ) |
| 17 | fvexd | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) ∈ V ) | |
| 18 | 15 16 11 17 | fvmptd4 | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑉 ‘ 𝑋 ) ) ‘ 𝐴 ) = ( 𝐴 ‘ 𝑋 ) ) |
| 19 | 14 18 | jca | ⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑉 ‘ 𝑋 ) ) ‘ 𝐴 ) = ( 𝐴 ‘ 𝑋 ) ) ) |