This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for multiplication. (Contributed by SN, 18-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlmulval.q | ⊢ 𝑄 = ( 𝐼 eval 𝑆 ) | |
| evlmulval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑆 ) | ||
| evlmulval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| evlmulval.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| evlmulval.g | ⊢ ∙ = ( .r ‘ 𝑃 ) | ||
| evlmulval.f | ⊢ · = ( .r ‘ 𝑆 ) | ||
| evlmulval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑍 ) | ||
| evlmulval.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlmulval.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | ||
| evlmulval.m | ⊢ ( 𝜑 → ( 𝑀 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) = 𝑉 ) ) | ||
| evlmulval.n | ⊢ ( 𝜑 → ( 𝑁 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) = 𝑊 ) ) | ||
| Assertion | evlmulval | ⊢ ( 𝜑 → ( ( 𝑀 ∙ 𝑁 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑀 ∙ 𝑁 ) ) ‘ 𝐴 ) = ( 𝑉 · 𝑊 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlmulval.q | ⊢ 𝑄 = ( 𝐼 eval 𝑆 ) | |
| 2 | evlmulval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑆 ) | |
| 3 | evlmulval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 4 | evlmulval.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 5 | evlmulval.g | ⊢ ∙ = ( .r ‘ 𝑃 ) | |
| 6 | evlmulval.f | ⊢ · = ( .r ‘ 𝑆 ) | |
| 7 | evlmulval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑍 ) | |
| 8 | evlmulval.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 9 | evlmulval.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | |
| 10 | evlmulval.m | ⊢ ( 𝜑 → ( 𝑀 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) = 𝑉 ) ) | |
| 11 | evlmulval.n | ⊢ ( 𝜑 → ( 𝑁 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) = 𝑊 ) ) | |
| 12 | eqid | ⊢ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) | |
| 13 | 1 3 2 12 | evlrhm | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ) → 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 14 | 7 8 13 | syl2anc | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 15 | rhmrcl1 | ⊢ ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑃 ∈ Ring ) | |
| 16 | 14 15 | syl | ⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 17 | 10 | simpld | ⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) |
| 18 | 11 | simpld | ⊢ ( 𝜑 → 𝑁 ∈ 𝐵 ) |
| 19 | 4 5 16 17 18 | ringcld | ⊢ ( 𝜑 → ( 𝑀 ∙ 𝑁 ) ∈ 𝐵 ) |
| 20 | eqid | ⊢ ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) | |
| 21 | 4 5 20 | rhmmul | ⊢ ( ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵 ) → ( 𝑄 ‘ ( 𝑀 ∙ 𝑁 ) ) = ( ( 𝑄 ‘ 𝑀 ) ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( 𝑄 ‘ 𝑁 ) ) ) |
| 22 | 14 17 18 21 | syl3anc | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑀 ∙ 𝑁 ) ) = ( ( 𝑄 ‘ 𝑀 ) ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( 𝑄 ‘ 𝑁 ) ) ) |
| 23 | eqid | ⊢ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) | |
| 24 | ovexd | ⊢ ( 𝜑 → ( 𝐾 ↑m 𝐼 ) ∈ V ) | |
| 25 | 4 23 | rhmf | ⊢ ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 26 | 14 25 | syl | ⊢ ( 𝜑 → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 27 | 26 17 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 28 | 26 18 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 29 | 12 23 8 24 27 28 6 20 | pwsmulrval | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑀 ) ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( 𝑄 ‘ 𝑁 ) ) = ( ( 𝑄 ‘ 𝑀 ) ∘f · ( 𝑄 ‘ 𝑁 ) ) ) |
| 30 | 22 29 | eqtrd | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑀 ∙ 𝑁 ) ) = ( ( 𝑄 ‘ 𝑀 ) ∘f · ( 𝑄 ‘ 𝑁 ) ) ) |
| 31 | 30 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑀 ∙ 𝑁 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑀 ) ∘f · ( 𝑄 ‘ 𝑁 ) ) ‘ 𝐴 ) ) |
| 32 | 12 3 23 8 24 27 | pwselbas | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
| 33 | 32 | ffnd | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) Fn ( 𝐾 ↑m 𝐼 ) ) |
| 34 | 12 3 23 8 24 28 | pwselbas | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
| 35 | 34 | ffnd | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) Fn ( 𝐾 ↑m 𝐼 ) ) |
| 36 | fnfvof | ⊢ ( ( ( ( 𝑄 ‘ 𝑀 ) Fn ( 𝐾 ↑m 𝐼 ) ∧ ( 𝑄 ‘ 𝑁 ) Fn ( 𝐾 ↑m 𝐼 ) ) ∧ ( ( 𝐾 ↑m 𝐼 ) ∈ V ∧ 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) ) → ( ( ( 𝑄 ‘ 𝑀 ) ∘f · ( 𝑄 ‘ 𝑁 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) · ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) ) ) | |
| 37 | 33 35 24 9 36 | syl22anc | ⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 𝑀 ) ∘f · ( 𝑄 ‘ 𝑁 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) · ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) ) ) |
| 38 | 10 | simprd | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) = 𝑉 ) |
| 39 | 11 | simprd | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) = 𝑊 ) |
| 40 | 38 39 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) · ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) ) = ( 𝑉 · 𝑊 ) ) |
| 41 | 31 37 40 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑀 ∙ 𝑁 ) ) ‘ 𝐴 ) = ( 𝑉 · 𝑊 ) ) |
| 42 | 19 41 | jca | ⊢ ( 𝜑 → ( ( 𝑀 ∙ 𝑁 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑀 ∙ 𝑁 ) ) ‘ 𝐴 ) = ( 𝑉 · 𝑊 ) ) ) |