This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The evaluation of a scalar of a subring yields the same result as evaluated as a scalar over the ring itself. (Contributed by AV, 12-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsscasrng.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| evlsscasrng.o | ⊢ 𝑂 = ( 𝐼 eval 𝑆 ) | ||
| evlsscasrng.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) | ||
| evlsscasrng.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evlsscasrng.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑆 ) | ||
| evlsscasrng.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| evlsscasrng.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | ||
| evlsscasrng.c | ⊢ 𝐶 = ( algSc ‘ 𝑃 ) | ||
| evlsscasrng.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| evlsscasrng.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlsscasrng.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evlsscasrng.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) | ||
| Assertion | evlsscasrng | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝑂 ‘ ( 𝐶 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsscasrng.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 2 | evlsscasrng.o | ⊢ 𝑂 = ( 𝐼 eval 𝑆 ) | |
| 3 | evlsscasrng.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) | |
| 4 | evlsscasrng.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 5 | evlsscasrng.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑆 ) | |
| 6 | evlsscasrng.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 7 | evlsscasrng.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 8 | evlsscasrng.c | ⊢ 𝐶 = ( algSc ‘ 𝑃 ) | |
| 9 | evlsscasrng.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 10 | evlsscasrng.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 11 | evlsscasrng.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 12 | evlsscasrng.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) | |
| 13 | 6 | ressid | ⊢ ( 𝑆 ∈ CRing → ( 𝑆 ↾s 𝐵 ) = 𝑆 ) |
| 14 | 13 | eqcomd | ⊢ ( 𝑆 ∈ CRing → 𝑆 = ( 𝑆 ↾s 𝐵 ) ) |
| 15 | 10 14 | syl | ⊢ ( 𝜑 → 𝑆 = ( 𝑆 ↾s 𝐵 ) ) |
| 16 | 15 | oveq2d | ⊢ ( 𝜑 → ( 𝐼 mPoly 𝑆 ) = ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) ) |
| 17 | 5 16 | eqtrid | ⊢ ( 𝜑 → 𝑃 = ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) ) |
| 18 | 17 | fveq2d | ⊢ ( 𝜑 → ( algSc ‘ 𝑃 ) = ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) ) ) |
| 19 | 8 18 | eqtrid | ⊢ ( 𝜑 → 𝐶 = ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) ) ) |
| 20 | 19 | fveq1d | ⊢ ( 𝜑 → ( 𝐶 ‘ 𝑋 ) = ( ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) ) ‘ 𝑋 ) ) |
| 21 | 20 | fveq2d | ⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ‘ ( 𝐶 ‘ 𝑋 ) ) = ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ‘ ( ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) ) ‘ 𝑋 ) ) ) |
| 22 | eqid | ⊢ ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) | |
| 23 | eqid | ⊢ ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) = ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) | |
| 24 | eqid | ⊢ ( 𝑆 ↾s 𝐵 ) = ( 𝑆 ↾s 𝐵 ) | |
| 25 | eqid | ⊢ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) ) = ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) ) | |
| 26 | crngring | ⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) | |
| 27 | 6 | subrgid | ⊢ ( 𝑆 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
| 28 | 10 26 27 | 3syl | ⊢ ( 𝜑 → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
| 29 | 6 | subrgss | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐵 ) |
| 30 | 11 29 | syl | ⊢ ( 𝜑 → 𝑅 ⊆ 𝐵 ) |
| 31 | 30 12 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 32 | 22 23 24 6 25 9 10 28 31 | evlssca | ⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ‘ ( ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) ) ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ) |
| 33 | 21 32 | eqtrd | ⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ‘ ( 𝐶 ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ) |
| 34 | 2 6 | evlval | ⊢ 𝑂 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) |
| 35 | 34 | a1i | ⊢ ( 𝜑 → 𝑂 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ) |
| 36 | 35 | fveq1d | ⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐶 ‘ 𝑋 ) ) = ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ‘ ( 𝐶 ‘ 𝑋 ) ) ) |
| 37 | 1 3 4 6 7 9 10 11 12 | evlssca | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ) |
| 38 | 33 36 37 | 3eqtr4rd | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝑂 ‘ ( 𝐶 ‘ 𝑋 ) ) ) |