This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The simple evaluation map is a ring homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlval.q | ⊢ 𝑄 = ( 𝐼 eval 𝑅 ) | |
| evlval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| evlrhm.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑅 ) | ||
| evlrhm.t | ⊢ 𝑇 = ( 𝑅 ↑s ( 𝐵 ↑m 𝐼 ) ) | ||
| Assertion | evlrhm | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝑄 ∈ ( 𝑊 RingHom 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlval.q | ⊢ 𝑄 = ( 𝐼 eval 𝑅 ) | |
| 2 | evlval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | evlrhm.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑅 ) | |
| 4 | evlrhm.t | ⊢ 𝑇 = ( 𝑅 ↑s ( 𝐵 ↑m 𝐼 ) ) | |
| 5 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ Ring ) |
| 7 | 2 | subrgid | ⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
| 8 | 6 7 | syl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
| 9 | 1 2 | evlval | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑅 ) ‘ 𝐵 ) |
| 10 | eqid | ⊢ ( 𝐼 mPoly ( 𝑅 ↾s 𝐵 ) ) = ( 𝐼 mPoly ( 𝑅 ↾s 𝐵 ) ) | |
| 11 | eqid | ⊢ ( 𝑅 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) | |
| 12 | 9 10 11 4 2 | evlsrhm | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ∧ 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑄 ∈ ( ( 𝐼 mPoly ( 𝑅 ↾s 𝐵 ) ) RingHom 𝑇 ) ) |
| 13 | 8 12 | mpd3an3 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝑄 ∈ ( ( 𝐼 mPoly ( 𝑅 ↾s 𝐵 ) ) RingHom 𝑇 ) ) |
| 14 | 2 | ressid | ⊢ ( 𝑅 ∈ CRing → ( 𝑅 ↾s 𝐵 ) = 𝑅 ) |
| 15 | 14 | adantl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → ( 𝑅 ↾s 𝐵 ) = 𝑅 ) |
| 16 | 15 | oveq2d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → ( 𝐼 mPoly ( 𝑅 ↾s 𝐵 ) ) = ( 𝐼 mPoly 𝑅 ) ) |
| 17 | 16 3 | eqtr4di | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → ( 𝐼 mPoly ( 𝑅 ↾s 𝐵 ) ) = 𝑊 ) |
| 18 | 17 | oveq1d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → ( ( 𝐼 mPoly ( 𝑅 ↾s 𝐵 ) ) RingHom 𝑇 ) = ( 𝑊 RingHom 𝑇 ) ) |
| 19 | 13 18 | eleqtrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝑄 ∈ ( 𝑊 RingHom 𝑇 ) ) |