This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for multiplication. (Contributed by SN, 18-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlmulval.q | |- Q = ( I eval S ) |
|
| evlmulval.p | |- P = ( I mPoly S ) |
||
| evlmulval.k | |- K = ( Base ` S ) |
||
| evlmulval.b | |- B = ( Base ` P ) |
||
| evlmulval.g | |- .xb = ( .r ` P ) |
||
| evlmulval.f | |- .x. = ( .r ` S ) |
||
| evlmulval.i | |- ( ph -> I e. Z ) |
||
| evlmulval.s | |- ( ph -> S e. CRing ) |
||
| evlmulval.a | |- ( ph -> A e. ( K ^m I ) ) |
||
| evlmulval.m | |- ( ph -> ( M e. B /\ ( ( Q ` M ) ` A ) = V ) ) |
||
| evlmulval.n | |- ( ph -> ( N e. B /\ ( ( Q ` N ) ` A ) = W ) ) |
||
| Assertion | evlmulval | |- ( ph -> ( ( M .xb N ) e. B /\ ( ( Q ` ( M .xb N ) ) ` A ) = ( V .x. W ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlmulval.q | |- Q = ( I eval S ) |
|
| 2 | evlmulval.p | |- P = ( I mPoly S ) |
|
| 3 | evlmulval.k | |- K = ( Base ` S ) |
|
| 4 | evlmulval.b | |- B = ( Base ` P ) |
|
| 5 | evlmulval.g | |- .xb = ( .r ` P ) |
|
| 6 | evlmulval.f | |- .x. = ( .r ` S ) |
|
| 7 | evlmulval.i | |- ( ph -> I e. Z ) |
|
| 8 | evlmulval.s | |- ( ph -> S e. CRing ) |
|
| 9 | evlmulval.a | |- ( ph -> A e. ( K ^m I ) ) |
|
| 10 | evlmulval.m | |- ( ph -> ( M e. B /\ ( ( Q ` M ) ` A ) = V ) ) |
|
| 11 | evlmulval.n | |- ( ph -> ( N e. B /\ ( ( Q ` N ) ` A ) = W ) ) |
|
| 12 | eqid | |- ( S ^s ( K ^m I ) ) = ( S ^s ( K ^m I ) ) |
|
| 13 | 1 3 2 12 | evlrhm | |- ( ( I e. Z /\ S e. CRing ) -> Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) ) |
| 14 | 7 8 13 | syl2anc | |- ( ph -> Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) ) |
| 15 | rhmrcl1 | |- ( Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) -> P e. Ring ) |
|
| 16 | 14 15 | syl | |- ( ph -> P e. Ring ) |
| 17 | 10 | simpld | |- ( ph -> M e. B ) |
| 18 | 11 | simpld | |- ( ph -> N e. B ) |
| 19 | 4 5 16 17 18 | ringcld | |- ( ph -> ( M .xb N ) e. B ) |
| 20 | eqid | |- ( .r ` ( S ^s ( K ^m I ) ) ) = ( .r ` ( S ^s ( K ^m I ) ) ) |
|
| 21 | 4 5 20 | rhmmul | |- ( ( Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) /\ M e. B /\ N e. B ) -> ( Q ` ( M .xb N ) ) = ( ( Q ` M ) ( .r ` ( S ^s ( K ^m I ) ) ) ( Q ` N ) ) ) |
| 22 | 14 17 18 21 | syl3anc | |- ( ph -> ( Q ` ( M .xb N ) ) = ( ( Q ` M ) ( .r ` ( S ^s ( K ^m I ) ) ) ( Q ` N ) ) ) |
| 23 | eqid | |- ( Base ` ( S ^s ( K ^m I ) ) ) = ( Base ` ( S ^s ( K ^m I ) ) ) |
|
| 24 | ovexd | |- ( ph -> ( K ^m I ) e. _V ) |
|
| 25 | 4 23 | rhmf | |- ( Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) -> Q : B --> ( Base ` ( S ^s ( K ^m I ) ) ) ) |
| 26 | 14 25 | syl | |- ( ph -> Q : B --> ( Base ` ( S ^s ( K ^m I ) ) ) ) |
| 27 | 26 17 | ffvelcdmd | |- ( ph -> ( Q ` M ) e. ( Base ` ( S ^s ( K ^m I ) ) ) ) |
| 28 | 26 18 | ffvelcdmd | |- ( ph -> ( Q ` N ) e. ( Base ` ( S ^s ( K ^m I ) ) ) ) |
| 29 | 12 23 8 24 27 28 6 20 | pwsmulrval | |- ( ph -> ( ( Q ` M ) ( .r ` ( S ^s ( K ^m I ) ) ) ( Q ` N ) ) = ( ( Q ` M ) oF .x. ( Q ` N ) ) ) |
| 30 | 22 29 | eqtrd | |- ( ph -> ( Q ` ( M .xb N ) ) = ( ( Q ` M ) oF .x. ( Q ` N ) ) ) |
| 31 | 30 | fveq1d | |- ( ph -> ( ( Q ` ( M .xb N ) ) ` A ) = ( ( ( Q ` M ) oF .x. ( Q ` N ) ) ` A ) ) |
| 32 | 12 3 23 8 24 27 | pwselbas | |- ( ph -> ( Q ` M ) : ( K ^m I ) --> K ) |
| 33 | 32 | ffnd | |- ( ph -> ( Q ` M ) Fn ( K ^m I ) ) |
| 34 | 12 3 23 8 24 28 | pwselbas | |- ( ph -> ( Q ` N ) : ( K ^m I ) --> K ) |
| 35 | 34 | ffnd | |- ( ph -> ( Q ` N ) Fn ( K ^m I ) ) |
| 36 | fnfvof | |- ( ( ( ( Q ` M ) Fn ( K ^m I ) /\ ( Q ` N ) Fn ( K ^m I ) ) /\ ( ( K ^m I ) e. _V /\ A e. ( K ^m I ) ) ) -> ( ( ( Q ` M ) oF .x. ( Q ` N ) ) ` A ) = ( ( ( Q ` M ) ` A ) .x. ( ( Q ` N ) ` A ) ) ) |
|
| 37 | 33 35 24 9 36 | syl22anc | |- ( ph -> ( ( ( Q ` M ) oF .x. ( Q ` N ) ) ` A ) = ( ( ( Q ` M ) ` A ) .x. ( ( Q ` N ) ` A ) ) ) |
| 38 | 10 | simprd | |- ( ph -> ( ( Q ` M ) ` A ) = V ) |
| 39 | 11 | simprd | |- ( ph -> ( ( Q ` N ) ` A ) = W ) |
| 40 | 38 39 | oveq12d | |- ( ph -> ( ( ( Q ` M ) ` A ) .x. ( ( Q ` N ) ` A ) ) = ( V .x. W ) ) |
| 41 | 31 37 40 | 3eqtrd | |- ( ph -> ( ( Q ` ( M .xb N ) ) ` A ) = ( V .x. W ) ) |
| 42 | 19 41 | jca | |- ( ph -> ( ( M .xb N ) e. B /\ ( ( Q ` ( M .xb N ) ) ` A ) = ( V .x. W ) ) ) |