This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for addition. (Contributed by SN, 9-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evladdval.q | ⊢ 𝑄 = ( 𝐼 eval 𝑆 ) | |
| evladdval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑆 ) | ||
| evladdval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| evladdval.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| evladdval.g | ⊢ ✚ = ( +g ‘ 𝑃 ) | ||
| evladdval.f | ⊢ + = ( +g ‘ 𝑆 ) | ||
| evladdval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑍 ) | ||
| evladdval.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evladdval.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | ||
| evladdval.m | ⊢ ( 𝜑 → ( 𝑀 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) = 𝑉 ) ) | ||
| evladdval.n | ⊢ ( 𝜑 → ( 𝑁 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) = 𝑊 ) ) | ||
| Assertion | evladdval | ⊢ ( 𝜑 → ( ( 𝑀 ✚ 𝑁 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑀 ✚ 𝑁 ) ) ‘ 𝐴 ) = ( 𝑉 + 𝑊 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evladdval.q | ⊢ 𝑄 = ( 𝐼 eval 𝑆 ) | |
| 2 | evladdval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑆 ) | |
| 3 | evladdval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 4 | evladdval.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 5 | evladdval.g | ⊢ ✚ = ( +g ‘ 𝑃 ) | |
| 6 | evladdval.f | ⊢ + = ( +g ‘ 𝑆 ) | |
| 7 | evladdval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑍 ) | |
| 8 | evladdval.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 9 | evladdval.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | |
| 10 | evladdval.m | ⊢ ( 𝜑 → ( 𝑀 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) = 𝑉 ) ) | |
| 11 | evladdval.n | ⊢ ( 𝜑 → ( 𝑁 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) = 𝑊 ) ) | |
| 12 | eqid | ⊢ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) | |
| 13 | 1 3 2 12 | evlrhm | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ) → 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 14 | 7 8 13 | syl2anc | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 15 | rhmghm | ⊢ ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑄 ∈ ( 𝑃 GrpHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 GrpHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 17 | ghmgrp1 | ⊢ ( 𝑄 ∈ ( 𝑃 GrpHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑃 ∈ Grp ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 19 | 10 | simpld | ⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) |
| 20 | 11 | simpld | ⊢ ( 𝜑 → 𝑁 ∈ 𝐵 ) |
| 21 | 4 5 18 19 20 | grpcld | ⊢ ( 𝜑 → ( 𝑀 ✚ 𝑁 ) ∈ 𝐵 ) |
| 22 | eqid | ⊢ ( +g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( +g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) | |
| 23 | 4 5 22 | ghmlin | ⊢ ( ( 𝑄 ∈ ( 𝑃 GrpHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵 ) → ( 𝑄 ‘ ( 𝑀 ✚ 𝑁 ) ) = ( ( 𝑄 ‘ 𝑀 ) ( +g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( 𝑄 ‘ 𝑁 ) ) ) |
| 24 | 16 19 20 23 | syl3anc | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑀 ✚ 𝑁 ) ) = ( ( 𝑄 ‘ 𝑀 ) ( +g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( 𝑄 ‘ 𝑁 ) ) ) |
| 25 | eqid | ⊢ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) | |
| 26 | ovexd | ⊢ ( 𝜑 → ( 𝐾 ↑m 𝐼 ) ∈ V ) | |
| 27 | 4 25 | rhmf | ⊢ ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 28 | 14 27 | syl | ⊢ ( 𝜑 → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 29 | 28 19 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 30 | 28 20 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 31 | 12 25 8 26 29 30 6 22 | pwsplusgval | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑀 ) ( +g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( 𝑄 ‘ 𝑁 ) ) = ( ( 𝑄 ‘ 𝑀 ) ∘f + ( 𝑄 ‘ 𝑁 ) ) ) |
| 32 | 24 31 | eqtrd | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑀 ✚ 𝑁 ) ) = ( ( 𝑄 ‘ 𝑀 ) ∘f + ( 𝑄 ‘ 𝑁 ) ) ) |
| 33 | 32 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑀 ✚ 𝑁 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑀 ) ∘f + ( 𝑄 ‘ 𝑁 ) ) ‘ 𝐴 ) ) |
| 34 | 12 3 25 8 26 29 | pwselbas | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
| 35 | 34 | ffnd | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) Fn ( 𝐾 ↑m 𝐼 ) ) |
| 36 | 12 3 25 8 26 30 | pwselbas | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
| 37 | 36 | ffnd | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) Fn ( 𝐾 ↑m 𝐼 ) ) |
| 38 | fnfvof | ⊢ ( ( ( ( 𝑄 ‘ 𝑀 ) Fn ( 𝐾 ↑m 𝐼 ) ∧ ( 𝑄 ‘ 𝑁 ) Fn ( 𝐾 ↑m 𝐼 ) ) ∧ ( ( 𝐾 ↑m 𝐼 ) ∈ V ∧ 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) ) → ( ( ( 𝑄 ‘ 𝑀 ) ∘f + ( 𝑄 ‘ 𝑁 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) + ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) ) ) | |
| 39 | 35 37 26 9 38 | syl22anc | ⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 𝑀 ) ∘f + ( 𝑄 ‘ 𝑁 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) + ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) ) ) |
| 40 | 10 | simprd | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) = 𝑉 ) |
| 41 | 11 | simprd | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) = 𝑊 ) |
| 42 | 40 41 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) + ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) ) = ( 𝑉 + 𝑊 ) ) |
| 43 | 33 39 42 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑀 ✚ 𝑁 ) ) ‘ 𝐴 ) = ( 𝑉 + 𝑊 ) ) |
| 44 | 21 43 | jca | ⊢ ( 𝜑 → ( ( 𝑀 ✚ 𝑁 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑀 ✚ 𝑁 ) ) ‘ 𝐴 ) = ( 𝑉 + 𝑊 ) ) ) |