This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for addition. (Contributed by SN, 9-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evladdval.q | |- Q = ( I eval S ) |
|
| evladdval.p | |- P = ( I mPoly S ) |
||
| evladdval.k | |- K = ( Base ` S ) |
||
| evladdval.b | |- B = ( Base ` P ) |
||
| evladdval.g | |- .+b = ( +g ` P ) |
||
| evladdval.f | |- .+ = ( +g ` S ) |
||
| evladdval.i | |- ( ph -> I e. Z ) |
||
| evladdval.s | |- ( ph -> S e. CRing ) |
||
| evladdval.a | |- ( ph -> A e. ( K ^m I ) ) |
||
| evladdval.m | |- ( ph -> ( M e. B /\ ( ( Q ` M ) ` A ) = V ) ) |
||
| evladdval.n | |- ( ph -> ( N e. B /\ ( ( Q ` N ) ` A ) = W ) ) |
||
| Assertion | evladdval | |- ( ph -> ( ( M .+b N ) e. B /\ ( ( Q ` ( M .+b N ) ) ` A ) = ( V .+ W ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evladdval.q | |- Q = ( I eval S ) |
|
| 2 | evladdval.p | |- P = ( I mPoly S ) |
|
| 3 | evladdval.k | |- K = ( Base ` S ) |
|
| 4 | evladdval.b | |- B = ( Base ` P ) |
|
| 5 | evladdval.g | |- .+b = ( +g ` P ) |
|
| 6 | evladdval.f | |- .+ = ( +g ` S ) |
|
| 7 | evladdval.i | |- ( ph -> I e. Z ) |
|
| 8 | evladdval.s | |- ( ph -> S e. CRing ) |
|
| 9 | evladdval.a | |- ( ph -> A e. ( K ^m I ) ) |
|
| 10 | evladdval.m | |- ( ph -> ( M e. B /\ ( ( Q ` M ) ` A ) = V ) ) |
|
| 11 | evladdval.n | |- ( ph -> ( N e. B /\ ( ( Q ` N ) ` A ) = W ) ) |
|
| 12 | eqid | |- ( S ^s ( K ^m I ) ) = ( S ^s ( K ^m I ) ) |
|
| 13 | 1 3 2 12 | evlrhm | |- ( ( I e. Z /\ S e. CRing ) -> Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) ) |
| 14 | 7 8 13 | syl2anc | |- ( ph -> Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) ) |
| 15 | rhmghm | |- ( Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) -> Q e. ( P GrpHom ( S ^s ( K ^m I ) ) ) ) |
|
| 16 | 14 15 | syl | |- ( ph -> Q e. ( P GrpHom ( S ^s ( K ^m I ) ) ) ) |
| 17 | ghmgrp1 | |- ( Q e. ( P GrpHom ( S ^s ( K ^m I ) ) ) -> P e. Grp ) |
|
| 18 | 16 17 | syl | |- ( ph -> P e. Grp ) |
| 19 | 10 | simpld | |- ( ph -> M e. B ) |
| 20 | 11 | simpld | |- ( ph -> N e. B ) |
| 21 | 4 5 18 19 20 | grpcld | |- ( ph -> ( M .+b N ) e. B ) |
| 22 | eqid | |- ( +g ` ( S ^s ( K ^m I ) ) ) = ( +g ` ( S ^s ( K ^m I ) ) ) |
|
| 23 | 4 5 22 | ghmlin | |- ( ( Q e. ( P GrpHom ( S ^s ( K ^m I ) ) ) /\ M e. B /\ N e. B ) -> ( Q ` ( M .+b N ) ) = ( ( Q ` M ) ( +g ` ( S ^s ( K ^m I ) ) ) ( Q ` N ) ) ) |
| 24 | 16 19 20 23 | syl3anc | |- ( ph -> ( Q ` ( M .+b N ) ) = ( ( Q ` M ) ( +g ` ( S ^s ( K ^m I ) ) ) ( Q ` N ) ) ) |
| 25 | eqid | |- ( Base ` ( S ^s ( K ^m I ) ) ) = ( Base ` ( S ^s ( K ^m I ) ) ) |
|
| 26 | ovexd | |- ( ph -> ( K ^m I ) e. _V ) |
|
| 27 | 4 25 | rhmf | |- ( Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) -> Q : B --> ( Base ` ( S ^s ( K ^m I ) ) ) ) |
| 28 | 14 27 | syl | |- ( ph -> Q : B --> ( Base ` ( S ^s ( K ^m I ) ) ) ) |
| 29 | 28 19 | ffvelcdmd | |- ( ph -> ( Q ` M ) e. ( Base ` ( S ^s ( K ^m I ) ) ) ) |
| 30 | 28 20 | ffvelcdmd | |- ( ph -> ( Q ` N ) e. ( Base ` ( S ^s ( K ^m I ) ) ) ) |
| 31 | 12 25 8 26 29 30 6 22 | pwsplusgval | |- ( ph -> ( ( Q ` M ) ( +g ` ( S ^s ( K ^m I ) ) ) ( Q ` N ) ) = ( ( Q ` M ) oF .+ ( Q ` N ) ) ) |
| 32 | 24 31 | eqtrd | |- ( ph -> ( Q ` ( M .+b N ) ) = ( ( Q ` M ) oF .+ ( Q ` N ) ) ) |
| 33 | 32 | fveq1d | |- ( ph -> ( ( Q ` ( M .+b N ) ) ` A ) = ( ( ( Q ` M ) oF .+ ( Q ` N ) ) ` A ) ) |
| 34 | 12 3 25 8 26 29 | pwselbas | |- ( ph -> ( Q ` M ) : ( K ^m I ) --> K ) |
| 35 | 34 | ffnd | |- ( ph -> ( Q ` M ) Fn ( K ^m I ) ) |
| 36 | 12 3 25 8 26 30 | pwselbas | |- ( ph -> ( Q ` N ) : ( K ^m I ) --> K ) |
| 37 | 36 | ffnd | |- ( ph -> ( Q ` N ) Fn ( K ^m I ) ) |
| 38 | fnfvof | |- ( ( ( ( Q ` M ) Fn ( K ^m I ) /\ ( Q ` N ) Fn ( K ^m I ) ) /\ ( ( K ^m I ) e. _V /\ A e. ( K ^m I ) ) ) -> ( ( ( Q ` M ) oF .+ ( Q ` N ) ) ` A ) = ( ( ( Q ` M ) ` A ) .+ ( ( Q ` N ) ` A ) ) ) |
|
| 39 | 35 37 26 9 38 | syl22anc | |- ( ph -> ( ( ( Q ` M ) oF .+ ( Q ` N ) ) ` A ) = ( ( ( Q ` M ) ` A ) .+ ( ( Q ` N ) ` A ) ) ) |
| 40 | 10 | simprd | |- ( ph -> ( ( Q ` M ) ` A ) = V ) |
| 41 | 11 | simprd | |- ( ph -> ( ( Q ` N ) ` A ) = W ) |
| 42 | 40 41 | oveq12d | |- ( ph -> ( ( ( Q ` M ) ` A ) .+ ( ( Q ` N ) ` A ) ) = ( V .+ W ) ) |
| 43 | 33 39 42 | 3eqtrd | |- ( ph -> ( ( Q ` ( M .+b N ) ) ` A ) = ( V .+ W ) ) |
| 44 | 21 43 | jca | |- ( ph -> ( ( M .+b N ) e. B /\ ( ( Q ` ( M .+b N ) ) ` A ) = ( V .+ W ) ) ) |