This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Constants are polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pf1const.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| pf1const.q | ⊢ 𝑄 = ran ( eval1 ‘ 𝑅 ) | ||
| Assertion | pf1const | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝐵 × { 𝑋 } ) ∈ 𝑄 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pf1const.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | pf1const.q | ⊢ 𝑄 = ran ( eval1 ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( eval1 ‘ 𝑅 ) = ( eval1 ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) = ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) | |
| 6 | 3 4 1 5 | evl1sca | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( ( eval1 ‘ 𝑅 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑋 ) ) = ( 𝐵 × { 𝑋 } ) ) |
| 7 | eqid | ⊢ ( 𝑅 ↑s 𝐵 ) = ( 𝑅 ↑s 𝐵 ) | |
| 8 | 3 4 7 1 | evl1rhm | ⊢ ( 𝑅 ∈ CRing → ( eval1 ‘ 𝑅 ) ∈ ( ( Poly1 ‘ 𝑅 ) RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( eval1 ‘ 𝑅 ) ∈ ( ( Poly1 ‘ 𝑅 ) RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
| 10 | eqid | ⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) | |
| 11 | eqid | ⊢ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) | |
| 12 | 10 11 | rhmf | ⊢ ( ( eval1 ‘ 𝑅 ) ∈ ( ( Poly1 ‘ 𝑅 ) RingHom ( 𝑅 ↑s 𝐵 ) ) → ( eval1 ‘ 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
| 13 | ffn | ⊢ ( ( eval1 ‘ 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) → ( eval1 ‘ 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) | |
| 14 | 9 12 13 | 3syl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( eval1 ‘ 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 15 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 17 | 4 5 1 10 | ply1sclf | ⊢ ( 𝑅 ∈ Ring → ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) : 𝐵 ⟶ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 18 | 16 17 | syl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) : 𝐵 ⟶ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 19 | ffvelcdm | ⊢ ( ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) : 𝐵 ⟶ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∧ 𝑋 ∈ 𝐵 ) → ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) | |
| 20 | 18 19 | sylancom | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 21 | fnfvelrn | ⊢ ( ( ( eval1 ‘ 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∧ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( eval1 ‘ 𝑅 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑋 ) ) ∈ ran ( eval1 ‘ 𝑅 ) ) | |
| 22 | 14 20 21 | syl2anc | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( ( eval1 ‘ 𝑅 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑋 ) ) ∈ ran ( eval1 ‘ 𝑅 ) ) |
| 23 | 6 22 | eqeltrrd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝐵 × { 𝑋 } ) ∈ ran ( eval1 ‘ 𝑅 ) ) |
| 24 | 23 2 | eleqtrrdi | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝐵 × { 𝑋 } ) ∈ 𝑄 ) |